-
Notifications
You must be signed in to change notification settings - Fork 1
/
client_example.py
executable file
·219 lines (179 loc) · 8.11 KB
/
client_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
#!/usr/bin/env python3
# Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de
# Barcelona (UAB).
#
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
"""Basic CARLA client example."""
from __future__ import print_function
import argparse
import logging
import random
import time
from environment.carla.client import make_carla_client
from environment.carla.sensor import Camera, Lidar
from environment.carla.settings import CarlaSettings
from environment.carla.tcp import TCPConnectionError
from environment.carla.util import print_over_same_line
def run_carla_client(args):
# Here we will run 3 episodes with 300 frames each.
number_of_episodes = 10
frames_per_episode = 500
# We assume the CARLA server is already waiting for a client to connect at
# host:port. To create a connection we can use the `make_carla_client`
# context manager, it creates a CARLA client object and starts the
# connection. It will throw an exception if something goes wrong. The
# context manager makes sure the connection is always cleaned up on exit.
with make_carla_client(args.host, args.port) as client:
print('CarlaClient connected')
for episode in range(0, number_of_episodes):
# Start a new episode.
# Create a CarlaSettings object. This object is a wrapper around
# the CarlaSettings.ini file. Here we set the configuration we
# want for the new episode.
settings = CarlaSettings()
settings.set(
SynchronousMode=True,
SendNonPlayerAgentsInfo=False,
NumberOfVehicles=0,
NumberOfPedestrians=0,
WeatherId=random.choice([1]),
QualityLevel=args.quality_level)
settings.randomize_seeds()
camera0 = Camera('CameraRGB')
camera0.set_image_size(160, 120)
camera0.set(FOV=100)
camera0.set_position(2.0, 0.0, 1.4)
camera0.set_rotation(-15.0, 0, 0)
settings.add_sensor(camera0)
# Now we load these settings into the server. The server replies
# with a scene description containing the available start spots for
# the player. Here we can provide a CarlaSettings object or a
# CarlaSettings.ini file as string.
scene = client.load_settings(settings)
# Choose one player start at random.
number_of_player_starts = len(scene.player_start_spots)
player_start = random.randint(0, max(0, number_of_player_starts - 1))
# Notify the server that we want to start the episode at the
# player_start index. This function blocks until the server is ready
# to start the episode.
print('Starting new episode...')
client.start_episode(player_start)
# Iterate every frame in the episode.
for frame in range(0, frames_per_episode):
# Read the data produced by the server this frame.
measurements, sensor_data = client.read_data()
# Print some of the measurements.
print_measurements(measurements)
# Save the images to disk if requested.
if args.save_images_to_disk:
for name, measurement in sensor_data.items():
filename = args.out_filename_format.format(episode, name, frame)
measurement.save_to_disk(filename)
# We can access the encoded data of a given image as numpy
# array using its "data" property. For instance, to get the
# depth value (normalized) at pixel X, Y
#
# depth_array = sensor_data['CameraDepth'].data
# value_at_pixel = depth_array[Y, X]
#
# Now we have to send the instructions to control the vehicle.
# If we are in synchronous mode the server will pause the
# simulation until we send this control.
if not args.autopilot:
client.send_control(
steer=random.uniform(-1.0, 1.0),
throttle=0.5,
brake=0.0,
hand_brake=False,
reverse=False)
else:
# Together with the measurements, the server has sent the
# control that the in-game autopilot would do this frame. We
# can enable autopilot by sending back this control to the
# server. We can modify it if wanted, here for instance we
# will add some noise to the steer.
control = measurements.player_measurements.autopilot_control
# control.steer += random.uniform(-0.1, 0.1)
control.steer += random.uniform(-0.2, 0.2)
client.send_control(control)
def print_measurements(measurements):
number_of_agents = len(measurements.non_player_agents)
player_measurements = measurements.player_measurements
message = 'Vehicle at ({pos_x:.1f}, {pos_y:.1f}), '
message += '{speed:.0f} km/h, '
message += 'Collision: {{vehicles={col_cars:.0f}, pedestrians={col_ped:.0f}, other={col_other:.0f}}}, '
message += '{other_lane:.0f}% other lane, {offroad:.0f}% off-road, '
message += '({agents_num:d} non-player agents in the scene)'
message = message.format(
pos_x=player_measurements.transform.location.x,
pos_y=player_measurements.transform.location.y,
speed=player_measurements.forward_speed * 3.6, # m/s -> km/h
col_cars=player_measurements.collision_vehicles,
col_ped=player_measurements.collision_pedestrians,
col_other=player_measurements.collision_other,
other_lane=100 * player_measurements.intersection_otherlane,
offroad=100 * player_measurements.intersection_offroad,
agents_num=number_of_agents)
print_over_same_line(message)
def main():
argparser = argparse.ArgumentParser(description=__doc__)
argparser.add_argument(
'-v', '--verbose',
action='store_true',
dest='debug',
help='print debug information')
argparser.add_argument(
'--host',
metavar='H',
default='localhost',
help='IP of the host server (default: localhost)')
argparser.add_argument(
'-p', '--port',
metavar='P',
default=2000,
type=int,
help='TCP port to listen to (default: 2000)')
argparser.add_argument(
'-a', '--autopilot',
action='store_true',
help='enable autopilot')
argparser.add_argument(
'-l', '--lidar',
action='store_true',
help='enable Lidar')
argparser.add_argument(
'-q', '--quality-level',
choices=['Low', 'Epic'],
type=lambda s: s.title(),
default='Epic',
help='graphics quality level, a lower level makes the simulation run considerably faster.')
argparser.add_argument(
'-i', '--images-to-disk',
action='store_true',
dest='save_images_to_disk',
help='save images (and Lidar data if active) to disk')
argparser.add_argument(
'-c', '--carla-settings',
metavar='PATH',
dest='settings_filepath',
default=None,
help='Path to a "CarlaSettings.ini" file')
args = argparser.parse_args()
log_level = logging.DEBUG if args.debug else logging.INFO
logging.basicConfig(format='%(levelname)s: %(message)s', level=log_level)
logging.info('listening to server %s:%s', args.host, args.port)
args.out_filename_format = '_out/episode_{:0>4d}/{:s}/{:0>6d}'
while True:
try:
run_carla_client(args)
print('Done.')
return
except TCPConnectionError as error:
logging.error(error)
time.sleep(1)
if __name__ == '__main__':
try:
main()
except KeyboardInterrupt:
print('\nCancelled by user. Bye!')