-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathbackTesting.m
131 lines (86 loc) · 2.35 KB
/
backTesting.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
load('new.mat') % RAW RETURN DATA FILE
load('est.mat') % ESTIMATED PARAMETERS DATA FILE FROM mainEstimation.m
%load('unconOptimal.mat')
out.uuz = Returns(:,1); % Assume Risk Free Rate = JPM 3 Mo Cash Total Return Index
%% See Paper https://www0.gsb.columbia.edu/faculty/aang/papers/inquire.pdf
%% Eq 2
P = out.P;
Q = out.Q;
%% Eq 3, 4
uu1 = out.uu1;
uu2 = out.uu2;
uuz = out.uuz;
ew1 = P.*uu1+(1-P).*uu2;
ew2 = (1-Q).*uu1+Q.*uu2;
%% Eq 5, 6
%% Eq 7
betas = out.betas;
e1t = {};
e2t = {};
for i=50:length(betas)
e1t{i} = (ones(length(betas{i}),1) - betas{i}) * uuz(i) + betas{i} * ew1(i);
e2t{i} = (ones(length(betas{i}),1) - betas{i}) * uuz(i) + betas{i} * ew2(i);
end
%% Eq 8
sig1 = out.sig1;
sig2 = out.sig2;
vols = out.vols;
Pi1 = {};
Pi2 = {};
Sigma1 = {};
Sigma2 = {};
w1s = [];
w2s = [];
for i=50:length(betas)
de = e1t{i} - e2t{i};
V = diag((vols{i}(2:end-1)).^2);
%% Eq 8
Pi1{i} = betas{i}*betas{i}'*sig1(i)^2 + V; %% Eq 8
Pi2{i} = betas{i}*betas{i}'*sig2(i)^2 + V; %% Eq 8
%% Eq 9
Sigma1{i} = P(i)*Pi1{i} + (1-P(i))*Pi2{i} + P(i)*(1-P(i))*de*de'; %% Eq 9
Sigma2{i} = (1-Q(i))*Pi1{i} + Q(i)*Pi2{i} + Q(i)*(1-Q(i))*de*de'; %% Eq 9
%% Eq 10
w1 = inv(Sigma1{i})*e1t{i};
w2 = inv(Sigma2{i})*e2t{i};
w1 = w1 / sum(w1);
w2 = w2 / sum(w2);
w1s = [w1s w1];
w2s = [w2s w2];
end
%% Backtesting from Month 50 to end
prob = out.prob(50:end);
ret1 = sum(w1s(:,1:end-1).*Returns(51:end,2:11)');
ret2 = sum(w2s(:,1:end-1).*Returns(51:end,2:11)');
rets = [];
ws = [];
for i=1:length(w1s')-1
if(prob(i)>0.5)
rets = [rets ret1(i)];
ws =[ws, w1s(i)];
else
rets = [rets ret2(i)];
ws =[ws, w2s(i)];
end
end
pld = [];
for i=1:12
pld = [pld ret2price(Returns(51:end,i))];
end
%% Analyse Turnover
tTurnover = 0;
for i=1:length(ws)-1
moTurnover = sum(abs(ws(:,i)-ws(:,i+1)))/2;
tTurnover = tTurnover + moTurnover;
end
yearlyTurnover = tTurnover*12/(length(ws)) %% Annualised Turnover of RS Strategy
%% Analyse Sharpe
meanReturn = mean(rets)*12
stdReturn = std(rets)*sqrt(12)
RSSharpe = (meanReturn- Returns(end,1))/ stdReturn
meanReturn = mean(Returns(50:end-1,12))*12
stdReturn = std(Returns(50:end-1,12))*sqrt(12)
worldSharpe = (meanReturn - Returns(end,1))/ stdReturn
%% Plotting
input('Press Enter to Plot Figures');
plotting