-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_dataset.py
34 lines (32 loc) · 1.23 KB
/
create_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
from config import IMG_DIR
import os
from sklearn.model_selection import train_test_split
import pandas as pd
# create dataset
def create_dataset():
# remove all old contents first
os.system("true > dataset.csv")
os.system("true > model.h5")
os.system("true > service_weights.h5")
dataset = []
# get all files in each image directories, then push it to dataset
for fold in os.listdir(IMG_DIR):
for filename in os.listdir(f'{IMG_DIR}/{fold}'):
dataset.append((f'{fold}/{filename}', fold))
# convert dataset to tabular form with column are filename, category
df = pd.DataFrame(dataset, columns=['filename', 'category'])
# split dataset into 2 set: training set and testint set with ratio 80:20
df_train, df_test = train_test_split(df, random_state=42, stratify=df.category, test_size=.2)
df_train['set'] = 'train'
df_test['set'] = 'test'
df = df_train.append(df_test)
# convert data to csv file
df.to_csv('dataset.csv', index=False)
df.head()
#read and prepare data
df = pd.read_csv('dataset.csv')
df.head()
# generate new dataframe with index reset
train_df = df[df.set == 'train'].reset_index(drop=True)
validate_df = df[df.set == 'test'].reset_index(drop=True)
return [train_df, validate_df]