-
Notifications
You must be signed in to change notification settings - Fork 3
/
timelens_option.yml
53 lines (45 loc) · 1.3 KB
/
timelens_option.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# general settings
name: EvLowLight
model_type: EventVideoRecurrentTestModel
#scale: 2
num_gpu: 1 # official: 8 GPUs
manual_seed: 0
find_unused_parameters: true
# dataset and data loader settings
datasets:
val:
name: TimeLens
type: EventVideoRecurrentTestDataset
data_keys: ['ev', 'lq', 'gt' ] #TODO: 'ev', 'lq', 'gt'
ev_file_ext: .npy
center_frame_only: true #TODO: [false], true
filename_tmpl_ev: save.txt #TODO: save.txt, events.h5, output.h5
meta_info_file: data/meta_info/meta_info_real_timelens.txt #TODO: meta info
load_size: [ 640, 480 ] #TODO: (854, 480) (480, 320) (1280, 924)
# real_ev_size: [305, 250] # (320, 240), (346, 260), (960, 540)
dataroot_gt: ../datasets/timelens/low
dataroot_lq: ../datasets/timelens/low
dataroot_ev: ../datasets/timelens/voxels
scale: 1 #TODO: 2, 1
filename_tmpl: 06d
filename_ext: png
num_frame: 5 # -1 not needed
padding: reflection
minimum_size: 16 # 8 * scale
# network structures
network_g:
type: EvLowLightNet
mid_channels: 64
num_blocks: 7
ev_flow_factor: 0.2
prop_iter: 1
flow_iter: 6
# path
path:
pretrain_network_g: experiments/pretrained_models/EvLowLightNet.pth
strict_load_g: false
# validation settings
val:
save_img: true # false
suffix: null
metrics: ~