-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_dqn_test.py
146 lines (114 loc) · 3.72 KB
/
train_dqn_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# get_ipython().magic(u'load_ext autoreload')
# get_ipython().magic(u'autoreload 2')
"""
Python 3.5, tensorflow 1.0.0
Trains first for train_episodes amount of episodes
and then starts playing with the best known policy with no exploration
Optionally save checkpoints to checkpoint_path (set checkpoint_path=None to not save anything)
Experience history is never saved
Training and playing can be early stopped by giving input (pressing enter in console)
"""
from dqn.dqn import CarRacingDQN
import os
import tensorflow as tf
import gym
import _thread
import re
import sys
from env import make_env
# SETTINGS
# to start training from scratch:
load_checkpoint = False
checkpoint_path = "data/checkpoint02"
train_episodes = 2000
save_freq_episodes = 400
# To play from existing checkpoint without any training:
# load_checkpoint = True
# checkpoint_path = "data/checkpoint01"
# train_episodes = 0 #or just give higher value to train the existing checkpoint more
model_config = dict(
min_epsilon=0.1,
max_negative_rewards=12,
min_experience_size=int(1e4),
num_frame_stack=3,
frame_skip=3,
train_freq=4,
batchsize=64,
epsilon_decay_steps=int(1e5),
network_update_freq=int(1e3),
experience_capacity=int(4e4),
gamma=0.95,
input_size=(64,64)
)
print(model_config)
########
env = make_env("carracing", seed=-1, render_mode=False, full_episode=False)
# env_name = "CarRacing-v0"
# env = gym.make(env_name)
# tf.reset_default_graph()
dqn_agent = CarRacingDQN(env=env, **model_config)
dqn_agent.build_graph()
sess = tf.InteractiveSession()
dqn_agent.session = sess
saver = tf.train.Saver(max_to_keep=100)
if load_checkpoint:
print("loading the latest checkpoint from %s" % checkpoint_path)
ckpt = tf.train.get_checkpoint_state(checkpoint_path)
assert ckpt, "checkpoint path %s not found" % checkpoint_path
global_counter = int(re.findall("-(\d+)$", ckpt.model_checkpoint_path)[0])
saver.restore(sess, ckpt.model_checkpoint_path)
dqn_agent.global_counter = global_counter
else:
if checkpoint_path is not None:
assert not os.path.exists(checkpoint_path), \
"checkpoint path already exists but load_checkpoint is false"
tf.global_variables_initializer().run()
def save_checkpoint():
if not os.path.exists(checkpoint_path):
os.makedirs(checkpoint_path)
p = os.path.join(checkpoint_path, "m.ckpt")
saver.save(sess, p, dqn_agent.global_counter)
print("saved to %s - %d" % (p, dqn_agent.global_counter))
def one_episode():
reward, frames = dqn_agent.play_episode()
print("episode: %d, reward: %f, length: %d, total steps: %d" %
(dqn_agent.episode_counter, reward, frames, dqn_agent.global_counter))
save_cond = (
dqn_agent.episode_counter % save_freq_episodes == 0
and checkpoint_path is not None
and dqn_agent.do_training
)
if save_cond:
save_checkpoint()
def input_thread(list):
input("...enter to stop after current episode\n")
list.append("OK")
def main_loop():
"""
This just calls training function
as long as we get input to stop
"""
list = []
_thread.start_new_thread(input_thread, (list,))
while True:
if list:
break
if dqn_agent.do_training and dqn_agent.episode_counter > train_episodes:
break
one_episode()
print("done")
if train_episodes > 0:
print("now training... you can early stop with enter...")
print("##########")
sys.stdout.flush()
main_loop()
save_checkpoint()
print("ok training done")
sys.stdout.flush()
dqn_agent.max_neg_rewards = 100
dqn_agent.do_training = False
print("now just playing...")
print("##########")
sys.stdout.flush()
main_loop()
print("That's it. Good bye")