From 6346a2dc2ab08ff8e533007223c41951e770c3dd Mon Sep 17 00:00:00 2001 From: Omikhleia Date: Wed, 16 Oct 2024 03:46:05 +0200 Subject: [PATCH 1/2] fix(math): Correct math greek symbols and their var-alternate --- packages/math/unicode-symbols.lua | 10 ++++++++-- 1 file changed, 8 insertions(+), 2 deletions(-) diff --git a/packages/math/unicode-symbols.lua b/packages/math/unicode-symbols.lua index 830a718c6..42b784bb3 100644 --- a/packages/math/unicode-symbols.lua +++ b/packages/math/unicode-symbols.lua @@ -2567,10 +2567,12 @@ symbols.alpha = "α" symbols.beta = "β" symbols.gamma = "γ" symbols.delta = "δ" -symbols.epsilon = "ε" +symbols.epsilon = "ϵ" +symbols.varepsilon = "ε" symbols.zeta = "ζ" symbols.eta = "η" symbols.theta = "θ" +symbols.vartheta = "ϑ" symbols.iota = "ι" symbols.kappa = "κ" symbols.lambda = "λ" @@ -2579,11 +2581,15 @@ symbols.nu = "ν" symbols.xi = "ξ" symbols.omicron = "ο" symbols.pi = "π" +symbols.varpi = "ϖ" symbols.rho = "ρ" +symbols.varrho = "ϱ" symbols.sigma = "σ" +symbols.varsigma = "ς" symbols.tau = "τ" symbols.upsilon = "υ" -symbols.phi = "φ" +symbols.phi = "ϕ" +symbols.varphi = "φ" symbols.chi = "χ" symbols.psi = "ψ" symbols.omega = "ω" From dcca7c8527f874e6e6f18caf2d1c8a60c1c1c737 Mon Sep 17 00:00:00 2001 From: Omikhleia Date: Thu, 17 Oct 2024 19:34:56 +0200 Subject: [PATCH 2/2] test(math): Update a TeX math test to use the expected varepsilon --- tests/math-bigops.xml | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/tests/math-bigops.xml b/tests/math-bigops.xml index 15c8cae65..ca08c6735 100644 --- a/tests/math-bigops.xml +++ b/tests/math-bigops.xml @@ -225,7 +225,7 @@ Integrals, display (large font), MathML: Integrals, text, TeX: \oiint_S \mi[mathvariant=bold]{E} \cdot - \mi[mathvariant=bold]{dS} = \frac{1}{\epsilon_0} + \mi[mathvariant=bold]{dS} = \frac{1}{\varepsilon_0} \iiint_V \rho \mi[mathvariant=normal]{dV} = \int_0^x {f(t)\mo{d}t} @@ -233,7 +233,7 @@ Integrals, text, TeX: Integrals, display, TeX: \oiint_S \mi[mathvariant=bold]{E} \cdot - \mi[mathvariant=bold]{dS} = \frac{1}{\epsilon_0} + \mi[mathvariant=bold]{dS} = \frac{1}{\varepsilon_0} \iiint_V \rho \mi[mathvariant=normal]{dV} = \int_0^x {f(t)\mo{d}t}