-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtest_metavar_framework.cpp
297 lines (265 loc) · 15.5 KB
/
test_metavar_framework.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
#define POCHIVM_INSIDE_METAVAR_UNIT_TEST_CPP
#include "gtest/gtest.h"
#include "fastinterp/metavar.hpp"
#include "pochivm.h"
using namespace PochiVM;
namespace TestMetaVar
{
enum class TestEnum1
{
EV1,
EV2,
EV3,
X_END_OF_ENUM
};
enum class TestEnum2
{
EW1,
EW2,
X_END_OF_ENUM
};
struct Materializer1
{
template<typename T1, typename T2, TestEnum1 v1, TestEnum2 v2, bool v3>
static constexpr bool cond()
{
if (v1 == TestEnum1::EV1 && v2 == TestEnum2::EW2) { return false; }
if (!std::is_same<T1, bool*>::value && !std::is_same<T1, int*>::value) { return false; }
if (!std::is_same<T2, int>::value && !std::is_same<T2, uint64_t>::value) { return false; }
return true;
}
template<typename T1, typename T2, TestEnum1 v1, TestEnum2 v2, bool v3>
static void f(uintptr_t t) noexcept
{
std::pair<T1, std::pair<T2, uint64_t>>* a = reinterpret_cast<std::pair<T1, std::pair<T2, uint64_t>>*>(t);
a->second.second = static_cast<uint64_t>(*a->first) + static_cast<uint64_t>(a->second.first) +
static_cast<uint64_t>(v1) + static_cast<uint64_t>(v2) + static_cast<uint64_t>(v3);
}
};
struct Materializer2
{
template<typename T1>
static constexpr bool cond()
{
return true;
}
template<typename T1>
static T1 f() noexcept
{
if constexpr(std::is_pointer<T1>::value) {
return nullptr;
}
else if constexpr(std::is_same<T1, void>::value) {
return;
}
else
{
return 0;
}
}
};
struct Materializer3
{
template<typename T1,
FINumOpaqueIntegralParams numIParams,
FINumOpaqueFloatingParams numFParams>
static constexpr bool cond()
{
if (std::is_same<T1, int>::value || std::is_same<T1, double>::value) { return true; }
return false;
}
template<typename T1,
FINumOpaqueIntegralParams numIParams,
FINumOpaqueFloatingParams numFParams,
typename... OpaqueParams>
static T1 f(OpaqueParams... /*oplist*/) noexcept
{
static_assert(sizeof...(OpaqueParams) == static_cast<size_t>(numIParams) + static_cast<size_t>(numFParams));
return 0;
}
};
} // namespace TestMetaVar
using namespace TestMetaVar;
TEST(MetaVarSanity, Test1)
{
MetaVarMaterializedList list = CreateMetaVarList(
CreateTypeMetaVar("a"),
CreateTypeMetaVar("b"),
CreateEnumMetaVar<TestEnum1::X_END_OF_ENUM>("c"),
CreateEnumMetaVar<TestEnum2::X_END_OF_ENUM>("d"),
CreateBoolMetaVar("e")
).Materialize<Materializer1>();
ReleaseAssert(list.m_metavars.size() == 5);
ReleaseAssert(list.m_metavars[0].m_name == std::string("a"));
ReleaseAssert(list.m_metavars[0].m_type == MetaVarType::PRIMITIVE_TYPE);
ReleaseAssert(list.m_metavars[1].m_name == std::string("b"));
ReleaseAssert(list.m_metavars[1].m_type == MetaVarType::PRIMITIVE_TYPE);
ReleaseAssert(list.m_metavars[2].m_name == std::string("c"));
ReleaseAssert(list.m_metavars[2].m_type == MetaVarType::ENUM);
ReleaseAssert(list.m_metavars[2].m_enum_typename == std::string("const char *__pochivm_stringify_type__() [T = TestMetaVar::TestEnum1]"));
ReleaseAssert(list.m_metavars[2].m_enum_bound == 3);
ReleaseAssert(list.m_metavars[3].m_name == std::string("d"));
ReleaseAssert(list.m_metavars[3].m_type == MetaVarType::ENUM);
ReleaseAssert(list.m_metavars[3].m_enum_typename == std::string("const char *__pochivm_stringify_type__() [T = TestMetaVar::TestEnum2]"));
ReleaseAssert(list.m_metavars[3].m_enum_bound == 2);
ReleaseAssert(list.m_metavars[4].m_name == std::string("e"));
ReleaseAssert(list.m_metavars[4].m_type == MetaVarType::BOOL);
ReleaseAssert(list.m_instances.size() == 5 * 4 * 2);
{
size_t cnt = 0;
for (int i1 = 0; i1 < 2; i1++)
{
for (int i2 = 0; i2 < 2; i2++)
{
for (int i3 = 0; i3 < 3; i3++)
{
for (int i4 = 0; i4 < 2; i4++)
{
if (i3 == 0 && i4 == 1) continue;
for (int i5 = 0; i5 < 2; i5++)
{
ReleaseAssert(list.m_instances[cnt].m_values.size() == 5);
if (i1 == 0)
{
ReleaseAssert(list.m_instances[cnt].m_values[0] == TypeId::Get<bool*>().value);
}
else
{
ReleaseAssert(list.m_instances[cnt].m_values[0] == TypeId::Get<int*>().value);
}
if (i2 == 0)
{
ReleaseAssert(list.m_instances[cnt].m_values[1] == TypeId::Get<int>().value);
}
else
{
ReleaseAssert(list.m_instances[cnt].m_values[1] == TypeId::Get<uint64_t>().value);
}
ReleaseAssert(list.m_instances[cnt].m_values[2] == static_cast<uint64_t>(i3));
ReleaseAssert(list.m_instances[cnt].m_values[3] == static_cast<uint64_t>(i4));
ReleaseAssert(list.m_instances[cnt].m_values[4] == static_cast<uint64_t>(i5));
cnt++;
}
}
}
}
}
ReleaseAssert(cnt == 40);
}
ReleaseAssert(list.m_instances[0].m_fnPtr == reinterpret_cast<void*>(Materializer1::f<bool*, int, TestEnum1::EV1, TestEnum2::EW1, false>));
ReleaseAssert(list.m_instances[1].m_fnPtr == reinterpret_cast<void*>(Materializer1::f<bool*, int, TestEnum1::EV1, TestEnum2::EW1, true>));
ReleaseAssert(list.m_instances[2].m_fnPtr == reinterpret_cast<void*>(Materializer1::f<bool*, int, TestEnum1::EV2, TestEnum2::EW1, false>));
ReleaseAssert(list.m_instances[3].m_fnPtr == reinterpret_cast<void*>(Materializer1::f<bool*, int, TestEnum1::EV2, TestEnum2::EW1, true>));
ReleaseAssert(list.m_instances[4].m_fnPtr == reinterpret_cast<void*>(Materializer1::f<bool*, int, TestEnum1::EV2, TestEnum2::EW2, false>));
ReleaseAssert(list.m_instances[5].m_fnPtr == reinterpret_cast<void*>(Materializer1::f<bool*, int, TestEnum1::EV2, TestEnum2::EW2, true>));
ReleaseAssert(list.m_instances[6].m_fnPtr == reinterpret_cast<void*>(Materializer1::f<bool*, int, TestEnum1::EV3, TestEnum2::EW1, false>));
ReleaseAssert(list.m_instances[7].m_fnPtr == reinterpret_cast<void*>(Materializer1::f<bool*, int, TestEnum1::EV3, TestEnum2::EW1, true>));
ReleaseAssert(list.m_instances[8].m_fnPtr == reinterpret_cast<void*>(Materializer1::f<bool*, int, TestEnum1::EV3, TestEnum2::EW2, false>));
ReleaseAssert(list.m_instances[9].m_fnPtr == reinterpret_cast<void*>(Materializer1::f<bool*, int, TestEnum1::EV3, TestEnum2::EW2, true>));
ReleaseAssert(list.m_instances[10].m_fnPtr == reinterpret_cast<void*>(Materializer1::f<bool*, uint64_t, TestEnum1::EV1, TestEnum2::EW1, false>));
ReleaseAssert(list.m_instances[11].m_fnPtr == reinterpret_cast<void*>(Materializer1::f<bool*, uint64_t, TestEnum1::EV1, TestEnum2::EW1, true>));
ReleaseAssert(list.m_instances[12].m_fnPtr == reinterpret_cast<void*>(Materializer1::f<bool*, uint64_t, TestEnum1::EV2, TestEnum2::EW1, false>));
ReleaseAssert(list.m_instances[13].m_fnPtr == reinterpret_cast<void*>(Materializer1::f<bool*, uint64_t, TestEnum1::EV2, TestEnum2::EW1, true>));
ReleaseAssert(list.m_instances[14].m_fnPtr == reinterpret_cast<void*>(Materializer1::f<bool*, uint64_t, TestEnum1::EV2, TestEnum2::EW2, false>));
ReleaseAssert(list.m_instances[15].m_fnPtr == reinterpret_cast<void*>(Materializer1::f<bool*, uint64_t, TestEnum1::EV2, TestEnum2::EW2, true>));
ReleaseAssert(list.m_instances[16].m_fnPtr == reinterpret_cast<void*>(Materializer1::f<bool*, uint64_t, TestEnum1::EV3, TestEnum2::EW1, false>));
ReleaseAssert(list.m_instances[17].m_fnPtr == reinterpret_cast<void*>(Materializer1::f<bool*, uint64_t, TestEnum1::EV3, TestEnum2::EW1, true>));
ReleaseAssert(list.m_instances[18].m_fnPtr == reinterpret_cast<void*>(Materializer1::f<bool*, uint64_t, TestEnum1::EV3, TestEnum2::EW2, false>));
ReleaseAssert(list.m_instances[19].m_fnPtr == reinterpret_cast<void*>(Materializer1::f<bool*, uint64_t, TestEnum1::EV3, TestEnum2::EW2, true>));
ReleaseAssert(list.m_instances[20].m_fnPtr == reinterpret_cast<void*>(Materializer1::f<int*, int, TestEnum1::EV1, TestEnum2::EW1, false>));
ReleaseAssert(list.m_instances[21].m_fnPtr == reinterpret_cast<void*>(Materializer1::f<int*, int, TestEnum1::EV1, TestEnum2::EW1, true>));
ReleaseAssert(list.m_instances[22].m_fnPtr == reinterpret_cast<void*>(Materializer1::f<int*, int, TestEnum1::EV2, TestEnum2::EW1, false>));
ReleaseAssert(list.m_instances[23].m_fnPtr == reinterpret_cast<void*>(Materializer1::f<int*, int, TestEnum1::EV2, TestEnum2::EW1, true>));
ReleaseAssert(list.m_instances[24].m_fnPtr == reinterpret_cast<void*>(Materializer1::f<int*, int, TestEnum1::EV2, TestEnum2::EW2, false>));
ReleaseAssert(list.m_instances[25].m_fnPtr == reinterpret_cast<void*>(Materializer1::f<int*, int, TestEnum1::EV2, TestEnum2::EW2, true>));
ReleaseAssert(list.m_instances[26].m_fnPtr == reinterpret_cast<void*>(Materializer1::f<int*, int, TestEnum1::EV3, TestEnum2::EW1, false>));
ReleaseAssert(list.m_instances[27].m_fnPtr == reinterpret_cast<void*>(Materializer1::f<int*, int, TestEnum1::EV3, TestEnum2::EW1, true>));
ReleaseAssert(list.m_instances[28].m_fnPtr == reinterpret_cast<void*>(Materializer1::f<int*, int, TestEnum1::EV3, TestEnum2::EW2, false>));
ReleaseAssert(list.m_instances[29].m_fnPtr == reinterpret_cast<void*>(Materializer1::f<int*, int, TestEnum1::EV3, TestEnum2::EW2, true>));
ReleaseAssert(list.m_instances[30].m_fnPtr == reinterpret_cast<void*>(Materializer1::f<int*, uint64_t, TestEnum1::EV1, TestEnum2::EW1, false>));
ReleaseAssert(list.m_instances[31].m_fnPtr == reinterpret_cast<void*>(Materializer1::f<int*, uint64_t, TestEnum1::EV1, TestEnum2::EW1, true>));
ReleaseAssert(list.m_instances[32].m_fnPtr == reinterpret_cast<void*>(Materializer1::f<int*, uint64_t, TestEnum1::EV2, TestEnum2::EW1, false>));
ReleaseAssert(list.m_instances[33].m_fnPtr == reinterpret_cast<void*>(Materializer1::f<int*, uint64_t, TestEnum1::EV2, TestEnum2::EW1, true>));
ReleaseAssert(list.m_instances[34].m_fnPtr == reinterpret_cast<void*>(Materializer1::f<int*, uint64_t, TestEnum1::EV2, TestEnum2::EW2, false>));
ReleaseAssert(list.m_instances[35].m_fnPtr == reinterpret_cast<void*>(Materializer1::f<int*, uint64_t, TestEnum1::EV2, TestEnum2::EW2, true>));
ReleaseAssert(list.m_instances[36].m_fnPtr == reinterpret_cast<void*>(Materializer1::f<int*, uint64_t, TestEnum1::EV3, TestEnum2::EW1, false>));
ReleaseAssert(list.m_instances[37].m_fnPtr == reinterpret_cast<void*>(Materializer1::f<int*, uint64_t, TestEnum1::EV3, TestEnum2::EW1, true>));
ReleaseAssert(list.m_instances[38].m_fnPtr == reinterpret_cast<void*>(Materializer1::f<int*, uint64_t, TestEnum1::EV3, TestEnum2::EW2, false>));
ReleaseAssert(list.m_instances[39].m_fnPtr == reinterpret_cast<void*>(Materializer1::f<int*, uint64_t, TestEnum1::EV3, TestEnum2::EW2, true>));
}
TEST(MetaVarSanity, Test2)
{
MetaVarMaterializedList list = CreateMetaVarList(
CreateTypeMetaVar("a")
).Materialize<Materializer2>();
ReleaseAssert(list.m_metavars.size() == 1);
ReleaseAssert(list.m_metavars[0].m_name == std::string("a"));
ReleaseAssert(list.m_metavars[0].m_type == MetaVarType::PRIMITIVE_TYPE);
ReleaseAssert(list.m_instances.size() == x_num_primitive_types * 2 + 3);
for (size_t i = 0; i < x_num_primitive_types * 2 + 3; i++)
{
size_t numPtr = i / (x_num_primitive_types + 1);
size_t v = i % (x_num_primitive_types + 1);
TypeId x; x.value = v;
while (numPtr > 0) { x = x.AddPointer(); numPtr--; }
ReleaseAssert(list.m_instances[i].m_values.size() == 1);
ReleaseAssert(list.m_instances[i].m_values[0] == x.value);
}
}
TEST(MetaVarSanity, Test3)
{
MetaVarMaterializedList list = CreateMetaVarList(
CreateTypeMetaVar("a"),
CreateOpaqueIntegralParamsLimit<x_fastinterp_max_integral_params>(),
CreateOpaqueFloatParamsLimit<x_fastinterp_max_floating_point_params>()
).Materialize<Materializer3>();
ReleaseAssert(list.m_metavars.size() == 3);
ReleaseAssert(list.m_metavars[0].m_name == std::string("a"));
ReleaseAssert(list.m_metavars[0].m_type == MetaVarType::PRIMITIVE_TYPE);
ReleaseAssert(list.m_metavars[1].m_type == MetaVarType::ENUM);
ReleaseAssert(list.m_metavars[2].m_type == MetaVarType::ENUM);
ReleaseAssert(list.m_instances.size() == 2 * static_cast<size_t>(x_fastinterp_max_integral_params + 1)
* static_cast<size_t>(x_fastinterp_max_floating_point_params + 1));
ReleaseAssert(list.m_instances.size() == 32);
#define FOR_EACH_CHECKLIST \
F(1, int, 0, 1, double) \
F(2, int, 0, 2, double, double) \
F(3, int, 0, 3, double, double, double) \
F(4, int, 1, 0, uint64_t) \
F(5, int, 1, 1, uint64_t, double) \
F(6, int, 1, 2, uint64_t, double, double) \
F(7, int, 1, 3, uint64_t, double, double, double) \
F(8, int, 2, 0, uint64_t, uint64_t) \
F(9, int, 2, 1, uint64_t, uint64_t, double) \
F(10, int, 2, 2, uint64_t, uint64_t, double, double) \
F(11, int, 2, 3, uint64_t, uint64_t, double, double, double) \
F(12, int, 3, 0, uint64_t, uint64_t, uint64_t) \
F(13, int, 3, 1, uint64_t, uint64_t, uint64_t, double) \
F(14, int, 3, 2, uint64_t, uint64_t, uint64_t, double, double) \
F(15, int, 3, 3, uint64_t, uint64_t, uint64_t, double, double, double) \
F(17, double, 0, 1, double) \
F(18, double, 0, 2, double, double) \
F(19, double, 0, 3, double, double, double) \
F(20, double, 1, 0, uint64_t) \
F(21, double, 1, 1, uint64_t, double) \
F(22, double, 1, 2, uint64_t, double, double) \
F(23, double, 1, 3, uint64_t, double, double, double) \
F(24, double, 2, 0, uint64_t, uint64_t) \
F(25, double, 2, 1, uint64_t, uint64_t, double) \
F(26, double, 2, 2, uint64_t, uint64_t, double, double) \
F(27, double, 2, 3, uint64_t, uint64_t, double, double, double) \
F(28, double, 3, 0, uint64_t, uint64_t, uint64_t) \
F(29, double, 3, 1, uint64_t, uint64_t, uint64_t, double) \
F(30, double, 3, 2, uint64_t, uint64_t, uint64_t, double, double) \
F(31, double, 3, 3, uint64_t, uint64_t, uint64_t, double, double, double)
ReleaseAssert(list.m_instances[0].m_fnPtr == reinterpret_cast<void*>(Materializer3::f<
int, static_cast<FINumOpaqueIntegralParams>(0), static_cast<FINumOpaqueFloatingParams>(0)>));
ReleaseAssert(list.m_instances[16].m_fnPtr == reinterpret_cast<void*>(Materializer3::f<
double, static_cast<FINumOpaqueIntegralParams>(0), static_cast<FINumOpaqueFloatingParams>(0)>));
#define F(ordinal, type1, v1, v2, ...) \
ReleaseAssert(list.m_instances[ordinal].m_fnPtr == reinterpret_cast<void*>(Materializer3::f< \
type1, static_cast<FINumOpaqueIntegralParams>(v1), static_cast<FINumOpaqueFloatingParams>(v2), __VA_ARGS__>));
FOR_EACH_CHECKLIST
#undef F
#undef FOR_EACH_CHECKLIST
}