-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathpairwise_seq_distance.cpp
493 lines (364 loc) · 17.3 KB
/
pairwise_seq_distance.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
/*
* Copyright (C) 2009-2012 Simon A. Berger
*
* This file is part of papara.
*
* papara is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* papara is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with papara. If not, see <http://www.gnu.org/licenses/>.
*/
#include <iostream>
#include <fstream>
#include <algorithm>
#include <deque>
//#include <boost/bind.hpp>
#include "align_vec.h"
// #define USE_BOOST_THREADS
#ifdef USE_BOOST_THREADS
#define BOOST_LIB_DIAGNOSTIC
#include <boost/thread.hpp>
namespace timpl = boost;
#else
#include "ivymike/thread.h"
namespace timpl = ivy_mike;
#endif
#include "ivymike/time.h"
#include "ivymike/write_png.h"
#include "ivymike/tdmatrix.h"
#include "ivymike/fasta.h"
#include "ivymike/aligned_buffer.h"
#ifndef PWDIST_INLINE
// this means this file is not included by pairwise_seq_distance.h itself...
#include "pairwise_seq_distance.h"
#endif
#ifndef PSD_DECLARE_INLINE
#define PSD_DECLARE_INLINE
#endif
using ivy_mike::scoring_matrix;
using ivy_mike::aligned_buffer;
//typedef boost::multi_array<int,2> pw_score_matrix;
typedef ivy_mike::tdmatrix<int> pw_score_matrix;
static double read_temp() {
std::ifstream is("/sys/class/hwmon/hwmon0/temp1_input" );
if( is.good() ) {
int temp;
is >> temp;
return temp * 1e-3;
} else {
return -1;
}
}
template <size_t W, typename seq_char_t>
struct db_block {
size_t didx[W];
// std::vector<seq_char_t> *ddata[W];
size_t dpad[W];
size_t maxlen;
int lj;
};
template <typename block>
struct block_queue {
std::deque<block> m_blocks;
timpl::mutex m_mtx;
volatile size_t m_ncup;
volatile size_t m_ok_flags;
block_queue() : m_ncup(0), m_ok_flags(0) {}
};
template <typename block_t>
struct worker {
block_queue<block_t> &m_queue;
worker( block_queue<block_t> &q ) : m_queue(q) {}
void operator()() {
}
};
// alignment worker thread. consumes block objects from the block-queue and writes results to the 2d matrix (m_outscore)
template <size_t W, typename seq_char_t, typename score_t, typename sscore_t>
struct lworker {
typedef db_block<W, seq_char_t> block_t;
const size_t m_nthreads;
const size_t m_rank;
block_queue<block_t> &m_queue;
const scoring_matrix &m_sm;
const std::vector< std::vector<uint8_t> > &m_seq1;
const std::vector< std::vector<uint8_t> > &m_seq2;
const sscore_t gap_open;
const sscore_t gap_extend;
const size_t m_block_size;
pw_score_matrix &m_outscore;
const bool m_half_matrix;
lworker( size_t nthreads, size_t rank, block_queue<block_t>&q, const scoring_matrix &sm, const std::vector< std::vector<uint8_t> > &seq1_, const std::vector< std::vector<uint8_t> > &seq2_, const sscore_t gap_open_, const sscore_t gap_extend_,pw_score_matrix &outscore, bool half_matrix, size_t block_size )
: m_nthreads(nthreads), m_rank(rank), m_queue(q), m_sm(sm), m_seq1(seq1_), m_seq2(seq2_), gap_open(gap_open_), gap_extend(gap_extend_), m_block_size(block_size), m_outscore(outscore), m_half_matrix( half_matrix )
{
if( m_half_matrix ) {
if( m_seq1.size() != m_seq2.size() ) {
throw std::runtime_error( "half_matrix mode set with m_seq1.size() != m_seq2.size()." );
}
}
}
void operator()() {
// thread entry point
size_t n_qseq = 0;
size_t n_qchar = 0;
size_t n_dseq = 0;
size_t n_dchar = 0;
bool first_block = true;
aligned_buffer<seq_char_t> ddata_int;
persistent_state<score_t> ps;
persistent_state_blocked<score_t, sscore_t> ps_blocked;
// {
// cpu_set_t cs;
// CPU_ZERO( &cs );
// CPU_SET( 0, &cs );
// if(pthread_setaffinity_np(pthread_self(), sizeof(cpu_set_t), &cs) != 0)
// {
// printf("\n\nThere was a problem finding a physical core for thread number %d to run on.\n", 0);
//
// assert(0);
// }
//
//
// }
// for( int i = 0; i < m_queue.m_blocks.size(); i++ ) {
//
// if( (i % m_nthreads) != m_rank ) {
// continue;
// }
//
//
// block_t block = m_queue.m_blocks[i];
size_t ncups = 0;
ivy_mike::timer t1;
ivy_mike::timer t2;
size_t ncups_last = 0;
while(true) {
// get next block from the queue
block_t block;
{
timpl::lock_guard<timpl::mutex> lock( m_queue.m_mtx );
if ( m_queue.m_blocks.empty() ) {
break;
}
block = m_queue.m_blocks.front();
m_queue.m_blocks.pop_front();
}
aligned_buffer<sscore_t> qprofile( block.maxlen * W * m_sm.num_states());
typename aligned_buffer<sscore_t>::iterator qpi = qprofile.begin();
// setup the qprofile (= lookup table for match penalties along the db-sequences in the current block)
// this is the faster (at least on core i5) two-step version, using interleaved db-sequences
// setup buffer for interleaved db sequences
if ( ddata_int.size() < block.maxlen * W ) {
ddata_int.resize(block.maxlen * W);
}
// copy individual db sequences into interleaved buffer (padding the shorter sequnences
typename aligned_buffer<seq_char_t>::iterator dint_iter = ddata_int.begin();
const int zero_state = m_sm.get_zero_state();
for ( size_t i = 0; i < block.maxlen; i++ ) {
for ( size_t j = 0; j < W; j++ ) {
const std::vector<seq_char_t> &sdi = m_seq1.at(block.didx[j]);//*(block.ddata[j]);
if ( i < sdi.size() ) {
*dint_iter = sdi[i];
// the aligner will catch this later if assertions are enabled
// #ifdef DEBUG
// if( *dint_iter >= m_sm.num_states() ) {
// throw std::runtime_error( "meeeep. illegal character in input sequences\n" );
// }
// #endif
} else {
*dint_iter = zero_state;
}
// std::cout << j << " " << int(*dint_iter) << " " << (i < sdi.size()) << "\n";
++dint_iter;
}
}
//copy interleaved scoring-matrix
for ( size_t j = 0; j < m_sm.num_states(); j++ ) {
dint_iter = ddata_int.begin();
const char *cslice = m_sm.get_cslice(j);
for ( size_t k = 0; k < block.maxlen; k++ ) {
for ( size_t l = 0; l < W; l++ ) {
// if( *dint_iter == zero_state ) {
// std::cout << int(cslice[*dint_iter]) << "\n";
//
// }
*qpi = cslice[*dint_iter];
++dint_iter;
++qpi;
}
}
}
std::vector<int> out(W);
size_t i_max;
if( m_half_matrix ) {
i_max = block.didx[block.lj];
} else {
i_max = m_seq2.size() - 1;
}
// std::cout << "i_max: " << i_max << " " << block.maxlen << "\n";
// const size_t i_max = m_seq.size() - 1;
// loop over all sequences and align them against the current profile
for ( size_t i_seq2 = 0; i_seq2 <= i_max; ++i_seq2 ) {
// for ( size_t i_seq2 = 0; i_seq2 < m_seq.size(); ++i_seq2 ) {
const std::vector<uint8_t> &qdata = m_seq2.at(i_seq2);
if ( first_block ) {
n_qseq++;
n_qchar+=qdata.size();
}
// call the alignment kernel
if( m_block_size == 0 ) {
align_vec<score_t,sscore_t,W>( ps, block.maxlen, qdata, m_sm, qprofile, gap_open, gap_extend, out );
} else if( m_block_size == 32 ) {
align_vec_blocked<score_t,sscore_t,W,32>( ps_blocked, block.maxlen, qdata, m_sm, qprofile, gap_open, gap_extend, out );
} else if( m_block_size == 64 ) {
align_vec_blocked<score_t,sscore_t,W,64>( ps_blocked, block.maxlen, qdata, m_sm, qprofile, gap_open, gap_extend, out );
} else if( m_block_size == 128 ) {
align_vec_blocked<score_t,sscore_t,W,128>( ps_blocked, block.maxlen, qdata, m_sm, qprofile, gap_open, gap_extend, out );
} else if( m_block_size == 256 ) {
align_vec_blocked<score_t,sscore_t,W,256>( ps_blocked, block.maxlen, qdata, m_sm, qprofile, gap_open, gap_extend, out );
} else {
std::cerr << "worker thread abort: unsupported block size: " << m_block_size << "\n";
return;
}
// write output scores to the output matrix. no lock necessary, as writes are independent.
for ( int j = 0; j <= block.lj; j++ ) {
// std::cout << out[j] << "\t" << dname[j] << " " << qname << " " << ddata[j].size() << "\n";
// std::cout << out[j] << "\t" << block.didx[j] << " " << i_seq2 << "\n";
// m_outscore[block.didx[j]][i_seq2] = out[j];
m_outscore[block.didx[j]][i_seq2] = out[j];
if( m_half_matrix ) {
m_outscore[i_seq2][block.didx[j]] = out[j];
}
ncups += m_seq2[i_seq2].size() * m_seq1[block.didx[j]].size();
}
}
for ( int j = 0; j <= block.lj; j++ ) {
// std::cout << out[j] << "\t" << dname[j] << " " << qname << " " << ddata[j].size() << "\n";
// std::cout << out[j] << "\t" << block.didx[j] << " " << i_seq2 << "\n";
n_dseq++;
n_dchar += m_seq1[block.didx[j]].size();
}
first_block = false;
if( m_rank == 0 && t1.elapsed() > 2 ) {
size_t dncup = ncups - ncups_last;
std::cerr << t2.elapsed() << " " << dncup << " in " << t1.elapsed() << " s " << dncup / (t1.elapsed() * 1e6) << " " << read_temp() << std::endl;
t1 = ivy_mike::timer();
ncups_last = ncups;
}
}
{
std::cerr << n_qchar << " x " << n_dchar << "\n";
timpl::lock_guard<timpl::mutex> lock( m_queue.m_mtx );
m_queue.m_ncup += ncups;
m_queue.m_ok_flags++;
}
}
};
// WARNING: the sequences are expected to be transformed to 'compressed states' (= 0, 1, 2 ...) rather than characters.
// The state mapping must be consistent with the supplied scoring matrix and its compressed form.
// Sequences containing numbers >= sm.num_states() will likely blow up the aligner, as there are no checks after this point!
PSD_DECLARE_INLINE bool pairwise_seq_distance( const std::vector< std::vector<uint8_t> > &seq1, const std::vector< std::vector<uint8_t> > &seq2, bool identical, pw_score_matrix &out_scores, const scoring_matrix &sm, const int gap_open, const int gap_extend, const size_t n_thread, const size_t block_size ) {
#if 1
const int W = 8;
typedef short score_t;
typedef short sscore_t;
#else
const int W = 16;
typedef unsigned char score_t;
typedef char sscore_t;
#endif
// size_t db_size = (sd.names.size() / W ) * W;
ivy_mike::timer t1;
// std::vector< std::vector<uint8_t> > seq( seq_raw.size() );
// seq.resize(400);
// for( int i = 0; i < seq.size(); i++ ) {
// std::for_each( seq_raw[i].begin(), seq_raw[i].end(), scoring_matrix::valid_state_appender<std::vector<uint8_t> >(sm, seq[i]) );
// }
if( seq1.size() != out_scores.size() || seq2.size() != out_scores[0].size() ) {
throw std::runtime_error( "out_scores matrix is too small" );
}
// const sscore_t gap_open = -5;
// const sscore_t gap_extend = -2;
typedef uint8_t seq_char_t;
//std::string dname[W];
// std::vector<score_t> dmask[W];
bool have_input = true;
size_t i_seq1 = 0;
// TODO: update comment for seq1 * seq2 alignment!
// the following code basically consists of two nested loops which align all elements in seq against each other (N*N alignments).
// It is a bit hard to recognize, though as the alignments operations are distributed to 'blocks' (=independent work units)
// consumed by the worker threads.
// each block normally consists of W (=vector unit width) sequences to be aligned agains all other sequences
block_queue<db_block<W, seq_char_t> > q;
std::deque<db_block<W, seq_char_t> > &blocks = q.m_blocks;
// generate the block objects and put them in the queue.
while( have_input ) {
// determine db sequences for the current block
db_block<W, seq_char_t> block;
block.maxlen = 0;
block.lj = -1;
for( int j = 0; j < W; j++ ) {
// dname[j].resize(0);
//ddata[j].resize(0);
// have_input = (i_seq1 != seq.size());
have_input = (i_seq1 != seq1.size());
// have_input = i_seq1 < 30;
// std::cout << "have_input " << have_input << " " << seq.size() << "\n";
// if there aren't enough db sequences left to fill the block, pad with last db sequence
if( !have_input ) {
// break immediately if there are no db sequences left (means #db-seqs % W == 0, or otherwise have_input would have been == false from last iteration)
if( j == 0 ) {
break;
} else {
// block.ddata[j] = block.ddata[block.lj];
block.didx[j] = block.didx[block.lj];
}
} else {
block.didx[j] = i_seq1;
// block.ddata[j] = &seq[i_seq1];
++i_seq1;
block.lj = j; // store largest valid 'j'
// for( int i = 0; i < ddata[j].length(); i++ ) {
//
// ddata[j][i] = sm.state_backmap(ddata[j][i]);
// }
}
// dmask[j].clear();
// dmask[j].resize(ddata[j].length(), 0xffff );
block.maxlen = std::max( block.maxlen, seq1[block.didx[j]].size() );
}
// std::cout << "maxlen; " << block.maxlen << "\n";
// jf == -1 at this point means that the block is empty (#db-seqs % W == 0)
if( block.lj == -1 ) {
break;
}
// std::cout << "block: " << block.didx[block.lj] << "\n";
blocks.push_back(block);
}
std::cerr << "blocks: " << blocks.size() << "\n";
//throw std::runtime_error( "exit" );
// return;
//pw_score_matrix out_scores(boost::extents[seq.size()][seq.size()]) ;
// spawn the worker threads. Each of them will consume blocks from the block-queue until it is empty.
// the results are concurrently written to the 2d matrix out_scores
timpl::thread_group tg;
for( size_t i = 0; i < n_thread; ++i ) {
lworker<W, seq_char_t, score_t, sscore_t> lw( n_thread, i, q, sm, seq1, seq2, gap_open, gap_extend, out_scores, identical, block_size );
std::cerr << "thread " << i << "\n";
tg.create_thread( lw );
}
tg.join_all();
if( q.m_ok_flags != n_thread ) {
std::cerr << n_thread - q.m_ok_flags << " threads did not exit properly.\n";
return false;
}
std::cerr << "aligned " << seq1.size() << " x " << seq2.size() << " sequences. " << q.m_ncup << " " << (q.m_ncup / (t1.elapsed() * 1.0e9)) << " GCup/s\n";
return true;
}