-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathpw_dist.cpp
421 lines (321 loc) · 14.6 KB
/
pw_dist.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
/*
* Copyright (C) 2009-2012 Simon A. Berger
*
* This file is part of papara.
*
* papara is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* papara is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with papara. If not, see <http://www.gnu.org/licenses/>.
*/
#include <fstream>
#include <memory>
#include <deque>
#include "fasta.h"
#include "ivymike/write_png.h"
#include "ivymike/statistics.h"
#include "ivymike/thread.h"
#include "ivymike/getopt.h"
#include <functional>
#include <iomanip>
// #define PWDIST_INLINE
#include "pairwise_seq_distance.h"
//void pairwise_seq_distance( const std::vector<std::string> &names, std::vector< std::vector<uint8_t> > &seq_raw, const scoring_matrix &sm, const int gap_open, const int gap_extend, const int n_thread );
#include "dtw.h"
#include <ivymike/time.h>
void write_phylip_distmatrix( const ivy_mike::tdmatrix<int> &ma, const std::vector<std::string> &names, std::ostream &os ) {
if( names.size() != ma.size() || ma.size() != ma[0].size() ) {
throw std::runtime_error( "distance matrix seems fishy (=matrix not quadratic)" );
}
os << ma.size() << "\n";
os << std::setiosflags(std::ios::fixed) << std::setprecision(4);
for( size_t i = 0; i < ma.size(); i++ ) {
os << names[i] << "\t";
for( size_t j = 0; j < ma[i].size(); j++ ) {
// three modes for normalizing: min, max and mean
//const float norm = std::min( ma[i][i], ma[j][j] );
// const float norm = std::max( ma[i][i], ma[j][j] );
const float norm = float(ma[i][i] + ma[j][j]) * 0.5f;
int mae;
if( i <= j ) {
mae = ma[i][j];
// mae = ma[j][i];
} else {
mae = ma[j][i];
}
const float dist = 1.0f - (mae / norm);
os << dist << "\t";
}
os << "\n";
}
}
class bla {
public:
void operator()() {
std::cout << "running\n";
}
};
// inline bool my_less( const std::pair<size_t,size_t> &a, const std::pair<size_t,size_t> &b ) {
// return a.first < b.first;
// }
// #define XSIZE(x) (sizeof(x) / sizeof(*x))
int main( int argc, char *argv[] ) {
// tdmatrix<int> tdm( 10, 10 );
//
// std::fill( tdm.begin(), tdm.end(), 33 );
//
// tdm[5][1] = 10;
//
// for( tdmatrix<int>::row_iterator rit = tdm.row_begin(); rit != tdm.row_end(); ++rit ) {
// odmatrix<int> odm = *rit;
// for( int i = 0; i < odm.size(); i++ ) {
// std::cout << odm[i] << " ";
// }
// std::cout << "\n";
// }
//
// return 0;
ivy_mike::getopt::parser igp;
std::string opt_seq_file;
std::string opt_seq_file2;
int opt_match;
int opt_mismatch;
int opt_gap_open;
int opt_gap_extend;
std::string opt_sm_name;
int opt_threads;
bool opt_out_dist_matrix;
bool opt_out_score_matrix;
bool opt_out_pgm_image;
bool opt_out_faux_swps3;
bool opt_out_none;
int opt_block_size;
igp.add_opt('h', false );
igp.add_opt('f', ivy_mike::getopt::value<std::string>(opt_seq_file) );
igp.add_opt('g', ivy_mike::getopt::value<std::string>(opt_seq_file2) );
igp.add_opt('m', ivy_mike::getopt::value<int>(opt_match).set_default(3) );
igp.add_opt('n', ivy_mike::getopt::value<int>(opt_mismatch).set_default(0) );
igp.add_opt('o', ivy_mike::getopt::value<int>(opt_gap_open).set_default(-5) );
igp.add_opt('e', ivy_mike::getopt::value<int>(opt_gap_extend).set_default(-3) );
igp.add_opt('s', ivy_mike::getopt::value<std::string>(opt_sm_name) );
igp.add_opt('t', ivy_mike::getopt::value<int>(opt_threads).set_default(1) );
igp.add_opt('b', ivy_mike::getopt::value<int>(opt_block_size).set_default(64) );
igp.add_opt('1', ivy_mike::getopt::value<bool>(opt_out_dist_matrix, true).set_default(false) );
igp.add_opt('2', ivy_mike::getopt::value<bool>(opt_out_score_matrix, true).set_default(false) );
igp.add_opt('3', ivy_mike::getopt::value<bool>(opt_out_pgm_image, true).set_default(false) );
igp.add_opt('4', ivy_mike::getopt::value<bool>(opt_out_faux_swps3, true).set_default(false) );
igp.add_opt('5', ivy_mike::getopt::value<bool>(opt_out_none, true).set_default(false) );
bool ret = igp.parse(argc, argv);
if( !opt_out_dist_matrix && !opt_out_score_matrix && !opt_out_pgm_image && !opt_out_faux_swps3 && !opt_out_none) {
opt_out_dist_matrix = true;
}
// std::cout << "opt_match: " << &opt_seq_file << "\n";
// return 0;
if( igp.opt_count('h') != 0 || !ret ) {
std::cout <<
" -h print help message\n" <<
" -f arg input sequence file (fasta)\n" <<
" -g arg input sequence file2 (fasta, optional)\n" <<
" -m arg match score (implies DNA data, excludes option -s)\n" <<
" -n arg mismatch score\n" <<
" -o arg gap open score (default: -5, negtive means penalize)\n" <<
" -e arg gap extend score (default: -3)\n" <<
" -s arg scoring matrix (optional)\n" <<
" -t arg number of threads (default: 1)\n" <<
" -b arg block size (L1 cache opt. default: 64, 0 means unblocked algorithm)\n\n" <<
" -1 output distance matrix (PHYLIP format, e.g. for nj-tree building with ninja)\n" <<
" -2 output raw score matrix\n" <<
" -3 output greyscale pgm image (gimmick)\n" <<
" -4 output swps3'esque list (in well defined order, though)\n" <<
" -5 output no results (e.g., for benchmark)\n" <<
" In any case, the output will be written to stdout.\n\n" <<
"The algorithm doesn't distinguish between DNA and AA data, as long as the\n" <<
"input sequences are consistent with the scoring matrix. The use of the -m\n" <<
"and -n options implies a DNA scoring matrix and will only work with DNA data\n";
return 0;
}
if( igp.opt_count('f') != 1 ) {
std::cerr << "missing option -f\n";
#ifndef WIN32 // hack. make it easier to start inside visual studio
return 0;
#endif
opt_seq_file = "c:\\src\\papara_nt\\test_1604\\1604.fa.400";
}
const bool have_second = igp.opt_count('g') != 0;
// std::string opt_seq_file = igp.get_string('f');
std::auto_ptr<scoring_matrix>sm;
if( igp.opt_count('s') != 0 ) {
//std::string sm_name = igp.get_string('s');
if( igp.opt_count('m') != 0 || igp.opt_count('n') != 0 ) {
std::cerr << "option -s used in combination with option -m or -n\n";
}
std::ifstream is ( opt_sm_name.c_str() );
if( !is.good() ) {
std::cout << "could not open scoring matrix " << opt_sm_name << "\n";
return -1;
}
std::cerr << "using generic scoring matrix from file: " << opt_sm_name << "\n";
sm.reset( new scoring_matrix( is ) );
} else {
// int match = 3;
// int mismatch = 0;
//
// igp.get_int_if_present('m',match);
// igp.get_int_if_present('n',mismatch);
std::cerr << "using flat DNA scoring. match: " << opt_match << " mismatch: " << opt_mismatch << "\n";
sm.reset( new scoring_matrix(opt_match, opt_mismatch));
}
// std::cout << "file: " << igp.get_string('f');
std::cerr << "gap open : " << opt_gap_open << "\n";
std::cerr << "gap extend: " << opt_gap_extend << "\n";
std::cerr << "nthreads : " << opt_threads << "\n";
std::cerr << "seq. file : " << opt_seq_file << "\n";
std::cerr << "block size: " << opt_block_size << "\n";
#if 0
// return 0;
namespace po = boost::program_options;
po::options_description desc( "Allowed options" );
std::string opt_seq_file;
int opt_match;
int opt_mismatch;
int opt_gap_open;
int opt_gap_extend;
int opt_threads;
std::string opt_scoring_matrix;
desc.add_options()
("help,h", "print help message" )
("seq-file,f", po::value<std::string>(&opt_seq_file), "input sequence file (fasta)" )
("match,m", po::value<int>(&opt_match)->default_value(3), "match score" )
("mismatch,n", po::value<int>(&opt_mismatch)->default_value(0), "mismatch score" )
("gap-open,o", po::value<int>(&opt_gap_open)->default_value(-5), "gap open score (default: -5, negtive means penalize)")
("gap-extend,e", po::value<int>(&opt_gap_extend)->default_value(-3), "gap extend score (default: -3)")
("scoring-matrix,s", po::value<std::string>(&opt_scoring_matrix), "scoring matrix (optional)")
("threads,t", po::value<int>(&opt_threads)->default_value(1), "number of threads (default: 1)" );
// po::positional_options_description p;
// p.add( "sdf-file", -1 );
po::variables_map vm;
// po::store( po::command_line_parser( argc, argv ), desc.positional(p).run(), vm );
try {
po::store( po::parse_command_line( argc, argv, desc ), vm );
} catch( po::error x ) {
std::cout << "could not parse commanline: " << x.what() << "\n";
std::cout << "available options:\n" << desc << "\n";
return -1;
}
po::notify(vm);
if( vm.count("help" ) ) {
std::cout << desc << "\n";
return -1;
}
std::auto_ptr<scoring_matrix>sm;
if( vm.count( "scoring-matrix" ) == 1 ) {
if( vm.count( "match" ) != 0 || vm.count( "mismatch" ) != 0 ) {
std::cout << "command line error: give either explicite scores OR scoring matrix\n";
std::cout << desc << "\n";
return -1;
}
std::ifstream is ( opt_scoring_matrix.c_str() );
if( !is.good() ) {
std::cout << "could not open scoring matrix " << opt_scoring_matrix << "\n";
return -1;
}
sm.reset( new scoring_matrix( is ) );
} else {
sm.reset( new scoring_matrix(opt_match, opt_mismatch));
}
if( vm.count( "seq-file" ) != 1 ) {
std::cout << desc << "\n";
std::cout << "missing seq file\n";
return -1;
}
#endif
std::vector<std::string> qs_names;
std::vector<std::vector<uint8_t> > qs_seqs;
std::vector<uint32_t> qs_map;
const bool sort_len = true;
{
std::vector<std::string> qs_names_us;
std::vector<std::vector<uint8_t> > qs_seqs_us;
std::ifstream qsf( opt_seq_file.c_str() );
if( !qsf.good() ) {
std::cout << "cannot open sequence file: " << opt_seq_file << "\n";
return -1;
}
read_fasta( qsf, *sm, qs_names_us, qs_seqs_us);
if( sort_len ) {
// sort sequences by length
std::vector<std::pair<uint32_t,uint32_t> >seq_lengths;
seq_lengths.reserve(qs_seqs_us.size());
assert( qs_seqs_us.size() < 0xFFFFFFFF );
for( size_t i = 0; i < qs_seqs_us.size(); ++i ) {
assert( qs_seqs_us[i].size() < 0xFFFFFFFF );
seq_lengths.push_back(std::pair<uint32_t,uint32_t>(uint32_t(qs_seqs_us[i].size()),uint32_t(i)));
}
// sort seq_lengths by std::pair.first (or std::pair.second if equal, but we don't care in that case)
std::sort( seq_lengths.begin(), seq_lengths.end() );//, my_less );
// permutate sequences and names. swap data into qs_names/qs_seqs along the way.
// FIXME: is there an easy way to apply a permutation in-place?
qs_names.resize( qs_names_us.size() );
qs_seqs.resize( qs_seqs_us.size() );
qs_map.resize(qs_seqs_us.size() );
for( size_t i = 0; i < qs_names_us.size(); ++i ) {
qs_names[i].swap( qs_names_us[seq_lengths[i].second] );
qs_seqs[i].swap( qs_seqs_us[seq_lengths[i].second] );
qs_map[seq_lengths[i].second] = uint32_t(i);
}
} else {
qs_names.swap(qs_names_us);
qs_seqs.swap(qs_seqs_us);
}
}
std::vector<std::string> qs_names2_exp;
std::vector<std::vector<uint8_t> > qs_seqs2_exp;
if( have_second )
{
std::ifstream qsf( opt_seq_file2.c_str() );
if( !qsf.good() ) {
std::cout << "cannot open sequence file: " << opt_seq_file2 << "\n";
return -1;
}
read_fasta( qsf, *sm, qs_names2_exp, qs_seqs2_exp);
}
// const std::vector<std::string> &qs_names2_ref = have_second ? qs_names2 : qs_names;
const std::vector<std::vector<uint8_t> > &qs_seqs2 = have_second ? qs_seqs2_exp : qs_seqs;
std::cerr << "using " << opt_threads << " threads\n";
// return 0;
// write_phylip_distmatrix( out_scores, names, std::cout );
ivy_mike::tdmatrix<int> out_scores( qs_seqs.size(), qs_seqs2.size() );
bool success = pairwise_seq_distance( qs_seqs, qs_seqs2, !have_second, out_scores, *sm, opt_gap_open, opt_gap_extend, opt_threads, opt_block_size);
if( !success ) {
std::cerr << "alignment failed. bailing out.\n";
return 1;
}
if( opt_out_dist_matrix ) {
write_phylip_distmatrix( out_scores, qs_names, std::cout );
} else if( opt_out_score_matrix ) {
for( size_t i = 0; i < qs_seqs.size(); i++ ) {
for( size_t j = 0; j < qs_seqs2.size(); j++ ) {
std::cout << out_scores[i][j] << "\t";
}
std::cout << "\n";
}
} else if( opt_out_pgm_image ) {
ivy_mike::write_png( out_scores, std::cout );
} else if( opt_out_faux_swps3 ) {
for( size_t i = 0; i < qs_seqs2.size(); i++ ) {
for( size_t j = 0; j < qs_seqs.size(); j++ ) {
size_t idx = (!qs_map.empty())? qs_map[j] : j;
std::cout << out_scores[idx][i] << "\t" << qs_names[idx] << "\n";
}
}
}
return 0;
}