-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnotes-fys4480.aux
233 lines (233 loc) · 20.5 KB
/
notes-fys4480.aux
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
\relax
\providecommand\hyper@newdestlabel[2]{}
\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument}
\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined
\global\let\oldcontentsline\contentsline
\gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}}
\global\let\oldnewlabel\newlabel
\gdef\newlabel#1#2{\newlabelxx{#1}#2}
\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}}
\AtEndDocument{\ifx\hyper@anchor\@undefined
\let\contentsline\oldcontentsline
\let\newlabel\oldnewlabel
\fi}
\fi}
\global\let\hyper@last\relax
\gdef\HyperFirstAtBeginDocument#1{#1}
\providecommand\HyField@AuxAddToFields[1]{}
\providecommand\HyField@AuxAddToCoFields[2]{}
\citation{Raimes}
\citation{GRH}
\citation{SzaboOstlund}
\citation{Leinaas1977}
\@writefile{toc}{\contentsline {chapter}{\numberline {1}Fundamental formalism}{3}{chapter.1}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{toc}{\contentsline {section}{\numberline {1.1}Many-particle systems}{3}{section.1.1}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.1.1}Hilbert space and Hamiltonian}{3}{subsection.1.1.1}}
\newlabel{eq:TISE}{{1.5}{4}{Hilbert space and Hamiltonian}{equation.1.1.5}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.1.2}More on the space $X$, and finite dimensional spaces}{4}{subsection.1.1.2}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.1.3}The manybody Hamiltonian}{5}{subsection.1.1.3}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.1.4}Separation of variables}{5}{subsection.1.1.4}}
\citation{Leinaas1977}
\citation{GRH}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.1.5}Permutations}{6}{subsection.1.1.5}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.1.6}Particle statistics}{6}{subsection.1.1.6}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.1.7}Slater determinants}{8}{subsection.1.1.7}}
\newlabel{eq:tensor}{{1.21}{8}{Slater determinants}{equation.1.1.21}{}}
\newlabel{eq:slater}{{1.31}{9}{}{equation.1.1.31}{}}
\newlabel{exercise:slater0}{{1.5}{9}{}{exerc.1.5}{}}
\newlabel{exercise:slater3}{{1.6}{9}{}{exerc.1.6}{}}
\newlabel{exercise:slater2}{{1.7}{10}{}{exerc.1.7}{}}
\newlabel{eq:antisym}{{1.43}{11}{}{equation.1.1.43}{}}
\@writefile{toc}{\contentsline {section}{\numberline {1.2}Second quantization}{11}{section.1.2}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.2.1}The creation and annihilation operators}{11}{subsection.1.2.1}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.2.2}Anticommutator relations}{13}{subsection.1.2.2}}
\newlabel{eq:anticommutator-relations}{{1.61}{13}{Anticommutator relations}{equation.1.2.61}{}}
\newlabel{eq:fundanti}{{1.61c}{13}{Anticommutator relations}{equation.1.2.3}{}}
\newlabel{eq:fundanti}{{1.65}{14}{Anticommutator relations}{equation.1.2.65}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.2.3}Occupation number representation}{15}{subsection.1.2.3}}
\newlabel{exercise:occupation}{{1.11}{16}{}{exerc.1.11}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.2.4}Spin orbitals and orbital diagrams}{16}{subsection.1.2.4}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.1}{\ignorespaces Illustration of spin-orbitals and a Slater determinant of 6 electrons}}{18}{figure.1.1}}
\newlabel{fig:orbitals}{{1.1}{18}{Illustration of spin-orbitals and a Slater determinant of 6 electrons}{figure.1.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.2.5}Fock space}{18}{subsection.1.2.5}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.2.6}Truncated bases}{19}{subsection.1.2.6}}
\newlabel{exercise:finite}{{1.13}{19}{}{exerc.1.13}{}}
\citation{HarrisMonkhorstFreeman}
\@writefile{toc}{\contentsline {section}{\numberline {1.3}Representation of operators}{21}{section.1.3}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.3.1}What we will prove}{21}{subsection.1.3.1}}
\newlabel{eq:onebody-operator-rep}{{1.95}{21}{What we will prove}{equation.1.3.95}{}}
\newlabel{eq:twobody-operator-rep}{{1.97}{21}{What we will prove}{equation.1.3.97}{}}
\newlabel{eq:twobody-matelem}{{1.98}{21}{What we will prove}{equation.1.3.98}{}}
\newlabel{eq:twobody-operator-rep-as}{{1.99}{21}{What we will prove}{equation.1.3.99}{}}
\newlabel{eq:twobody-matelem-as}{{1.100}{21}{What we will prove}{equation.1.3.100}{}}
\newlabel{lemma:replacement}{{1.1}{21}{}{lemma.1.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.3.2}One-body operators}{22}{subsection.1.3.2}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.3.3}Two-body operators}{23}{subsection.1.3.3}}
\newlabel{eq:0}{{1.107}{23}{Two-body operators}{equation.1.3.107}{}}
\newlabel{exercise:diagonal-matrix-elements}{{1.17}{24}{}{exerc.1.17}{}}
\newlabel{exercise:slater-condon-rules}{{1.18}{24}{}{exerc.1.18}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.2}{\ignorespaces Schematic plot of the possible single-particle levels with double degeneracy. The filled circles indicate occupied particle states. The spacing between each level $p$ is constant in this picture. We show some possible two-particle states.}}{25}{figure.1.2}}
\newlabel{fig:exercise-orbitals}{{1.2}{25}{Schematic plot of the possible single-particle levels with double degeneracy. The filled circles indicate occupied particle states. The spacing between each level $p$ is constant in this picture. We show some possible two-particle states}{figure.1.2}{}}
\@writefile{toc}{\contentsline {section}{\numberline {1.4}Wick's Theorem}{26}{section.1.4}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.4.1}A sort of summary and motivation}{26}{subsection.1.4.1}}
\newlabel{eq:SE-matrix}{{1.125}{27}{A sort of summary and motivation}{equation.1.4.125}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.4.2}Vacuum expectation values}{28}{subsection.1.4.2}}
\newlabel{eq:vacexp}{{1.138}{28}{Vacuum expectation values}{equation.1.4.138}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.4.3}Normal ordering and contractions}{29}{subsection.1.4.3}}
\newlabel{eq:normal-ordering-def}{{1.143}{29}{Normal ordering and contractions}{equation.1.4.143}{}}
\newlabel{eq:contr-def}{{1.148}{30}{Normal ordering and contractions}{equation.1.4.148}{}}
\newlabel{eq:contr-def-2}{{1.149}{30}{Normal ordering and contractions}{equation.1.4.149}{}}
\newlabel{eq:contractions}{{1.150}{30}{Normal ordering and contractions}{equation.1.4.150}{}}
\newlabel{eq:contraction-inside-normal-order-product}{{1.151}{30}{Normal ordering and contractions}{equation.1.4.151}{}}
\newlabel{eq:last-contraction-ex}{{1.153d}{31}{Normal ordering and contractions}{equation.1.4.4}{}}
\newlabel{exercise:contraction-relation}{{1.20}{31}{}{exerc.1.20}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.4.4}Statement of Wick's Theorem}{31}{subsection.1.4.4}}
\newlabel{eq:wick-statement}{{1.157}{31}{Wick's Theorem}{equation.1.4.157}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.4.5}Vacuum expectation values using Wick's Theorem}{32}{subsection.1.4.5}}
\newlabel{eq:even-vacuum-wick}{{1.160}{32}{Vacuum expectation values using Wick's Theorem}{equation.1.4.160}{}}
\newlabel{eq:even-vacuum-wick}{{1.162}{32}{Vacuum expectation values using Wick's Theorem}{equation.1.4.162}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.4.6}Proof of Wick's Theorem}{33}{subsection.1.4.6}}
\newlabel{lemma:lemma-for-wick}{{1.2}{33}{}{lemma.1.2}{}}
\newlabel{eq:lemma-statement}{{1.163}{33}{}{equation.1.4.163}{}}
\newlabel{lemma:wick2}{{1.3}{34}{}{lemma.1.3}{}}
\newlabel{eq:l1}{{1.166}{34}{}{equation.1.4.166}{}}
\newlabel{eq:wick-statement-2}{{1.169}{34}{Proof of Wick's Theorem}{equation.1.4.169}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.4.7}Using Wick's Theorem}{35}{subsection.1.4.7}}
\@writefile{toc}{\contentsline {section}{\numberline {1.5}Particle-hole formalism}{36}{section.1.5}}
\newlabel{eq:excit-commut}{{1.186}{37}{Particle-hole formalism}{equation.1.5.186}{}}
\newlabel{eq:quasi-wick-example}{{1.187}{38}{Particle-hole formalism}{equation.1.5.187}{}}
\@writefile{toc}{\contentsline {section}{\numberline {1.6}Operators on normal-order form (Not yet lectured)}{39}{section.1.6}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.6.1}The number operator}{39}{subsection.1.6.1}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.6.2}One-body operators}{39}{subsection.1.6.2}}
\newlabel{eq:normal-order-onebody-1}{{1.194}{40}{One-body operators}{equation.1.6.194}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.6.3}Two-body operators}{40}{subsection.1.6.3}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.6.4}Normal-ordered two-body Hamiltonian}{41}{subsection.1.6.4}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.6.5}Full expressions for the normal-ordered Hamiltonian}{41}{subsection.1.6.5}}
\newlabel{eq:normal-order-onebody-2}{{1.207}{41}{Full expressions for the normal-ordered Hamiltonian}{equation.1.6.207}{}}
\newlabel{eq:G2qp-pre}{{1.209}{41}{Full expressions for the normal-ordered Hamiltonian}{equation.1.6.209}{}}
\newlabel{eq:G2qp-final}{{1.210}{42}{Full expressions for the normal-ordered Hamiltonian}{equation.1.6.210}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {2}The Standard Methods of approximation}{43}{chapter.2}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{toc}{\contentsline {section}{\numberline {2.1}Introduction}{43}{section.2.1}}
\@writefile{toc}{\contentsline {section}{\numberline {2.2}The variational principle}{43}{section.2.2}}
\newlabel{eq:spectral-decomp}{{2.2}{43}{The variational principle}{equation.2.2.2}{}}
\newlabel{thm:vp}{{2.1}{43}{Variational principle}{theorem.2.1}{}}
\newlabel{thm:rr}{{2.2}{45}{Variational Principle, Rayleigh--Ritz}{theorem.2.2}{}}
\newlabel{eq:vp}{{2.19}{45}{The variational principle}{equation.2.2.19}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.1}{\ignorespaces Plot of approximate and exact ground-state wavefunction for the Hydrogen example}}{46}{figure.2.1}}
\newlabel{fig:hydrogen}{{2.1}{46}{Plot of approximate and exact ground-state wavefunction for the Hydrogen example}{figure.2.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2.1}The Cauchy interlace theorem and linear models}{46}{subsection.2.2.1}}
\newlabel{eq:matrix-expt}{{2.31}{46}{The Cauchy interlace theorem and linear models}{equation.2.2.31}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.3}The Configuration-interaction method (CI)}{47}{section.2.3}}
\newlabel{se:ci}{{2.3}{47}{The Configuration-interaction method (CI)}{section.2.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.1}General description}{47}{subsection.2.3.1}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.2}{\ignorespaces Fermi level and quasiparticles. To the left, we have the vacuum state. To the right, we have a doubly excited state, or a two-particle-two-hole-state. Notice how we draw the ``Fermi line'' between two levels for clarity. In this simple picture, we have assumed that the levels are non-degenerate. If we had spin present, we could fit two particles per level, and so on.}}{49}{figure.2.2}}
\newlabel{fig:fermi}{{2.2}{49}{Fermi level and quasiparticles. To the left, we have the vacuum state. To the right, we have a doubly excited state, or a two-particle-two-hole-state. Notice how we draw the ``Fermi line'' between two levels for clarity. In this simple picture, we have assumed that the levels are non-degenerate. If we had spin present, we could fit two particles per level, and so on}{figure.2.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.2}Matrix elements of the CI method}{49}{subsection.2.3.2}}
\newlabel{sec:ci-mat-elem}{{2.3.2}{49}{Matrix elements of the CI method}{subsection.2.3.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.3}Computer implementation of CI methods}{50}{subsection.2.3.3}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.4}Naive CI}{50}{subsection.2.3.4}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.5}Direct CI}{50}{subsection.2.3.5}}
\citation{HJO}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.6}Recipe for bit pattern representation.}{51}{subsection.2.3.6}}
\newlabel{ex:ci1}{{2.4}{53}{}{exerc.2.4}{}}
\newlabel{ex:ci2}{{2.5}{53}{}{exerc.2.5}{}}
\newlabel{ex:ci3}{{2.6}{53}{}{exerc.2.6}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.4}Hartree--Fock theory (HF)}{53}{section.2.4}}
\newlabel{sec:hf}{{2.4}{53}{Hartree--Fock theory (HF)}{section.2.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.1}The Hartree--Fock equations}{53}{subsection.2.4.1}}
\newlabel{sef:hf-equations}{{2.4.1}{53}{The Hartree--Fock equations}{subsection.2.4.1}{}}
\newlabel{eq:hf-energy}{{2.55}{53}{The Hartree--Fock equations}{equation.2.4.55}{}}
\newlabel{eq:hf-lagrangian}{{2.58}{54}{The Hartree--Fock equations}{equation.2.4.58}{}}
\newlabel{eq:emptyslot}{{2.62}{54}{The Hartree--Fock equations}{equation.2.4.62}{}}
\newlabel{thm:hf-equations}{{2.4}{54}{Hartree--Fock equations}{theorem.2.4}{}}
\newlabel{eq:hf-can}{{2.63}{54}{Hartree--Fock equations}{equation.2.4.63}{}}
\newlabel{eq:fock-op}{{2.64}{54}{Hartree--Fock equations}{equation.2.4.64}{}}
\newlabel{eq:direct}{{2.65}{54}{Hartree--Fock equations}{equation.2.4.65}{}}
\newlabel{eq:exchange}{{2.66}{54}{Hartree--Fock equations}{equation.2.4.66}{}}
\newlabel{eq:almost-noncan-hf}{{2.75}{56}{The Hartree--Fock equations}{equation.2.4.75}{}}
\newlabel{eq:noncan-hf}{{2.78}{56}{The Hartree--Fock equations}{equation.2.4.78}{}}
\newlabel{eq:nc-temp}{{2.81}{57}{The Hartree--Fock equations}{equation.2.4.81}{}}
\newlabel{eq:can-hf}{{2.82}{57}{The Hartree--Fock equations}{equation.2.4.82}{}}
\newlabel{def:hf-can}{{2.1}{58}{Canonical HF equations, HF basis}{definition.2.1}{}}
\newlabel{eq:hf-can-all}{{2.91}{58}{Canonical HF equations, HF basis}{equation.2.4.91}{}}
\newlabel{exercise:fock-hermitian}{{2.7}{59}{}{exerc.2.7}{}}
\newlabel{exercise:gamma-inv}{{2.8}{59}{}{exerc.2.8}{}}
\newlabel{exercise:can-hf-final-step}{{2.9}{59}{}{exerc.2.9}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.2}The Hartree--Fock equations in a given basis: the Roothan--Hall equations}{60}{subsection.2.4.2}}
\newlabel{eq:hf-can-matrix}{{2.106}{60}{The Hartree--Fock equations in a given basis: the Roothan--Hall equations}{equation.2.4.106}{}}
\citation{HJO}
\newlabel{eq:roothan-hall}{{2.114}{61}{The Hartree--Fock equations in a given basis: the Roothan--Hall equations}{equation.2.4.114}{}}
\newlabel{eq:roothan-hall}{{2.115}{61}{The Hartree--Fock equations in a given basis: the Roothan--Hall equations}{equation.2.4.115}{}}
\newlabel{exercise:hf-normalization}{{2.10}{61}{}{exerc.2.10}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.3}Self-consistent field iteration}{61}{subsection.2.4.3}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.4}Basis expansions in HF single-particle functions}{62}{subsection.2.4.4}}
\newlabel{eq:antisymm-elems-hf-inter}{{2.118}{62}{Basis expansions in HF single-particle functions}{equation.2.4.118}{}}
\newlabel{eq:hf-singles}{{2.133}{63}{Brillouin's Theorem}{equation.2.4.133}{}}
\newlabel{thm:brillouin-converse}{{2.7}{64}{Converse of Brillouin's Theorem}{theorem.2.7}{}}
\newlabel{eq:hf-singles}{{2.136}{64}{Converse of Brillouin's Theorem}{equation.2.4.136}{}}
\newlabel{eq:ttt}{{2.137}{64}{Basis expansions in HF single-particle functions}{equation.2.4.137}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.5}Restricted Hartree--Fock for electronic systems (RHF)}{64}{subsection.2.4.5}}
\newlabel{eq:doubly-occupied-slater}{{2.144}{65}{Restricted Hartree--Fock for electronic systems (RHF)}{equation.2.4.144}{}}
\newlabel{eq:rhf-onebody}{{2.145}{65}{Restricted Hartree--Fock for electronic systems (RHF)}{equation.2.4.145}{}}
\newlabel{eq:rhf-twobody}{{2.146}{65}{Restricted Hartree--Fock for electronic systems (RHF)}{equation.2.4.146}{}}
\newlabel{eq:rhf-energy}{{2.147}{65}{Restricted Hartree--Fock for electronic systems (RHF)}{equation.2.4.147}{}}
\newlabel{thm:rhf-eqns}{{2.8}{65}{Restricted Hartree--Fock equations}{theorem.2.8}{}}
\newlabel{eq:rhf-eq}{{2.148}{65}{Restricted Hartree--Fock equations}{equation.2.4.148}{}}
\newlabel{eq:rhf-energy2}{{2.151}{65}{Restricted Hartree--Fock equations}{equation.2.4.151}{}}
\newlabel{exercise:rhf-equations}{{2.11}{66}{}{exerc.2.11}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.6}Unrestricted Hartree--Fock for electronic systems (UHF)}{66}{subsection.2.4.6}}
\newlabel{eq:uhf-state}{{2.159}{66}{Unrestricted Hartree--Fock for electronic systems (UHF)}{equation.2.4.159}{}}
\newlabel{eq:uhf-energy}{{2.160}{67}{Unrestricted Hartree--Fock for electronic systems (UHF)}{equation.2.4.160}{}}
\newlabel{exercise:uhf-energy}{{2.12}{67}{}{exerc.2.12}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.7}The symmetry dilemma}{67}{subsection.2.4.7}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.8}Hartree--Fock for the electron gas}{67}{subsection.2.4.8}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.9}Normal-ordered Hamiltonian in HF basis (Not yet lectured)}{67}{subsection.2.4.9}}
\@writefile{toc}{\contentsline {section}{\numberline {2.5}Perturbation theory for the ground-state (PT)}{68}{section.2.5}}
\newlabel{sec:perturbation-theory}{{2.5}{68}{Perturbation theory for the ground-state (PT)}{section.2.5}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.5.1}Non-degenerate Rayleigh--Schr\"odinger perturbation theory (RSPT)}{68}{subsection.2.5.1}}
\newlabel{sec:rspt}{{2.5.1}{68}{Non-degenerate Rayleigh--Schr\"odinger perturbation theory (RSPT)}{subsection.2.5.1}{}}
\newlabel{eq:se-unpert}{{2.177}{69}{Non-degenerate Rayleigh--Schr\"odinger perturbation theory (RSPT)}{equation.2.5.177}{}}
\newlabel{eq:rspt-exps}{{2.180}{69}{Non-degenerate Rayleigh--Schr\"odinger perturbation theory (RSPT)}{equation.2.5.180}{}}
\newlabel{eq:rspt-psi}{{2.180a}{69}{Non-degenerate Rayleigh--Schr\"odinger perturbation theory (RSPT)}{equation.2.5.1}{}}
\newlabel{eq:rspt-e}{{2.180b}{69}{Non-degenerate Rayleigh--Schr\"odinger perturbation theory (RSPT)}{equation.2.5.2}{}}
\newlabel{eq:rspt-nth}{{2.182}{69}{Non-degenerate Rayleigh--Schr\"odinger perturbation theory (RSPT)}{equation.2.5.182}{}}
\newlabel{eq:in}{{2.185}{70}{Non-degenerate Rayleigh--Schr\"odinger perturbation theory (RSPT)}{equation.2.5.185}{}}
\newlabel{eq:rspt-nth2}{{2.188}{70}{Non-degenerate Rayleigh--Schr\"odinger perturbation theory (RSPT)}{equation.2.5.188}{}}
\newlabel{thm:rspt}{{2.9}{71}{Non-degenerate Rayleigh--Schr\"odinger Perturbation Theory}{theorem.2.9}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.5.2}Low-order RSPT}{71}{subsection.2.5.2}}
\citation{PaldusCizek}
\newlabel{eq:second-order-psi}{{2.207}{72}{Low-order RSPT}{equation.2.5.207}{}}
\newlabel{eq:third-order-e}{{2.208}{72}{Low-order RSPT}{equation.2.5.208}{}}
\newlabel{exercise:pt-higher}{{2.15}{72}{}{exerc.2.15}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.5.3}A two-state example}{73}{subsection.2.5.3}}
\newlabel{eq:twostate-taylor}{{2.220}{73}{A two-state example}{equation.2.5.220}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.3}{\ignorespaces The eigenvalues of a two-state problem, as function of the perturbation parameter $\lambda $. Here, $\epsilon = 1$.}}{74}{figure.2.3}}
\newlabel{fig:twostate}{{2.3}{74}{The eigenvalues of a two-state problem, as function of the perturbation parameter $\lambda $. Here, $\epsilon = 1$}{figure.2.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.5.4}Manybody Perturbation Theory (MBPT)}{75}{subsection.2.5.4}}
\newlabel{eq:mbpt2}{{2.243}{76}{Manybody Perturbation Theory (MBPT)}{equation.2.5.243}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {3}Feynman diagrams for Rayleigh--Schr\"odinger perturbation theory}{78}{chapter.3}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{sec:feynman}{{3}{78}{Feynman diagrams for Rayleigh--Schr\"odinger perturbation theory}{chapter.3}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {4}Coupled-cluster theory (CC)}{79}{chapter.4}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{sec:cc}{{4}{79}{Coupled-cluster theory (CC)}{chapter.4}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {A}Mathematical supplement}{80}{appendix.A}}
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\newlabel{ch:mathematical-supplement}{{A}{80}{Mathematical supplement}{appendix.A}{}}
\@input{calculus-of-variations.aux}
\bibstyle{unsrt}
\bibdata{fys4480-refs.bib}
\bibcite{Raimes}{1}
\bibcite{GRH}{2}
\bibcite{SzaboOstlund}{3}
\bibcite{Leinaas1977}{4}
\bibcite{HarrisMonkhorstFreeman}{5}
\bibcite{HJO}{6}
\bibcite{PaldusCizek}{7}