-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnotes-fys4480.tex~
5608 lines (4981 loc) · 222 KB
/
notes-fys4480.tex~
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass{report}
\usepackage[utf8x]{inputenc}
\usepackage[a4paper]{geometry}
\usepackage{hyperref}
\usepackage{amsmath,amsthm}
\usepackage{lipsum}
%\usepackage{cancel}
\usepackage{tikz}
\usepackage{verbatim}
\usepackage{simplewick}
\theoremstyle{plain}
\newtheorem{theorem}{Theorem}[chapter]
\newtheorem{lemma}{Lemma}[chapter]
\theoremstyle{definition}
\newtheorem{exerc}{Exercise}[chapter]
\newtheorem{definition}{Definition}[chapter]
\newcommand\xqed[1]{%
\leavevmode\unskip\penalty9999 \hbox{}\nobreak\hfill
\quad\hbox{#1}}
\newcommand\demo{\xqed{$\triangle$}}
\newenvironment{exercise}{\bigskip\begin{exerc}}{\demo\end{exerc}\bigskip}
\usepackage[lf]{MinionPro}
\usepackage[scr=rsfso,calscaled=.96]{mathalfa}
\usepackage{braket}
%
% A command for "slashing out" terms in mathematical expressions
%
\usetikzlibrary{shapes.misc}
\newcommand{\strikeout}[1]{%
\tikz[baseline, inner sep=0.5pt] \node [strike
out,draw=black,anchor=text]{$#1$};}
\usetikzlibrary{decorations.pathreplacing}
\newcommand{\note}[1]{{\color{red}\emph{NB:}~#1}}
\newcommand{\programname}[1]{{\sc#1}}
\input{newcommands.tex}
\title{Lecture notes for FYS--KJM 4480\\\large Quantum mechanics for many-particle systems}
\author{Simen Kvaal}
\date{\today}
\begin{document}
\maketitle
\tableofcontents
\chapter{Fundamental formalism}
Suggested reading for this chapter: Raimes \cite{Raimes}, sections
1.1--1.3, and Gross/Runge/Heinonen \cite{GRH}, section I.1. Chapter 1
of Szabo/Ostlund \cite{SzaboOstlund} contains a nice refresher on
mathematical topics, including linear algebra.
Disclaimer: This course is not a mathematics course, so some
mathematical details are glossed over. Examples include the fact that
the Hamiltonian is rarely a bounded operator, such that there exists
$\Psi$ such that $\hat{H}\Psi$ does not make sense in Hilbert
space. Often, operators have complicated spectra, including continuous
parts. For points in the continuous spectrum, no square-integrable
eigenfunction exists. As is usual, we ignore this complication, and
basically calculate as if everything were matrices of finite
dimension.
\section{Many-particle systems}
\subsection{Hilbert space and Hamiltonian}
We discuss the non-relativistic quantum mechanical description of a
system of many particles. For simplicity, we consider $N$ identical
particles.
Whereas the classical state of such a system is a point in phase
space, the quantum state is a wavefunction depending on all the
coordinates:
\begin{equation}
\Psi = \Psi(x_1,x_2,\cdots,x_N),
\end{equation}
where $x_i$ is a point in the configuration space $X$, the space where
each particle ``lives''. The
configuration space%
\footnote{Since the particles are identical, the configuration space is
actually the quotient space $X^N/S_N$, where $S_N$ is the permutation
group of $N$ objects. This means that we identify points in $X_N$ that
differ only by a permutation. Suppose $X=\RR^3$. Then $X^N$ is a flat
space. But $X^N/S_N$ is actually a curved space! For low-dimensional
systems, $X = \RR^1$ or $X = \RR^2$, one can show that particle
statistics is not confined to only bosons or fermions. See \cite{Leinaas1977}.}
for all $N$ particles is thus $X^N$, and
\begin{equation}
\Psi : X^N \longrightarrow \CC.
\end{equation}
Example: The configuration space for an electron is $\RR^3 \times
\{-\tfrac{1}{2},+\tfrac{1}{2}\}$. A single electron's configuration is $x = (\vec{r},s_z)$,
where $s_z$ is the projection of the electron spin along some
axis. The one-electron wavefunction can thus be considered a
\emph{two-component} wavefunction. The $N$-electron wavefunction is thus a function of $N$
coordinates $\vec{r}_i$ and $N$ spin variables $s_{z,i}$, in total
$2^N$ components.
Example: A nucleon has two discrete degrees of freedom: spin and
isospin. Thus, $X = \RR^3 \times \{-\tfrac{1}{2},+\tfrac{1}{2}\}
\times \{-\tfrac{1}{2},+\tfrac{1}{2}\}$, $x = (\vec{r},s_z,i_z)$. A
single nonrelativistic nucleon thus has a four-component
wavefunction, and $N$ nucleons $4^N$ components.
Remark: Mathematically, $X$ is a \emph{measure space}, which means
that a function $ \psi : X \to \CC$ can be \emph{integrated} over
subsets of $X$. For
subsets of $\RR^n$, the standard measure is Lebesgue measure, which
gives an integral slightly more general than the Riemann integral
encountered in introductory analysis courses. For discrete sets, the
standard measure is \emph{counting measure}, where the integral is
simply a sum. See also the small section on finite dimensional spaces
further down. This remark is for orientation only. For us,
we simply state that we \emph{integrate over continuous degrees of
freedom and sum over discrete degrees of freedom}. For $X = \RR^d
\times S$ with $S = \{ s_1 , s_2, \cdots , s_n\}$ a discrete set, we define
\[ \int_X f(x) dx = \sum_{s\in S} \int_{\RR^d} f(\vec{r},s) d^d
\vec{r}. \]
The wavefunction has a probabilistic interpretation:
$P(x_1,\cdots,x_N) = |\Psi(x_1,x_2,\cdots,x_N)|^2$ is the probability density for locating
all particles at the point $(x_1,\cdots,x_N)\in X^N$. Therefore,
$\Psi$ must be square integrable, and be in the Hilbert space $L^2(X^N)$,
\begin{equation}
\Psi \in L^2(X^N).
\end{equation}
%From now on, we use the Dirac bra-ket notation, and thus the state is
%$\ket{\Psi}$ and the spatial wavefunction is $\Psi(x_1,\cdots,x_N) =
%\braket{x_1,\cdots,x_N|\Psi}$.
All physics can be obtained from the state $\Psi$.
The governing equation in non-relativistic quantum mechanics is the
time-dependent Schr\"odinger equation (TDSE):
\begin{equation}
\hat{H} \Psi(x_1,x_2,\cdots,x_N,t) = i \hbar \frac{\partial}{\partial t} \Psi(x_1,x_2,\cdots,x_N,t).
\end{equation}
The system Hamiltonian $\hat{H}$ is obtained from its classical
counterpart (if such exists) by a procedure called \emph{Weyl
quantization} \note{Add reference}. If $\hat{H}$ does not explicitly depend on time, the
TDSE can be ``solved'' by instead considering the time-independent
Schr\"odinger equation (TISE),
\begin{equation}
\hat{H} \Psi(x_1,x_2,\cdots,x_N) = E \Psi(x_1,x_2,\cdots,x_N). \label{eq:TISE}
\end{equation}
The reason is well-known: the evolution operator is diagonal in the
eigenbasis.
The time-independent Sch\"odinger equation is the main focus in this
course, and we will only scratch the surface. $\Psi$ is a very, very,
\emph{very} complicated function. Intuitively, one might think that
solving for $\Psi$ is $N$ times as hard as solving for an $N=1$
wavefunction. However, $\Psi$ is a function of \emph{all $N$
coordinates}. Resolving each coordinate on a grid with, say, $K$
points requires $K^N$ points in total. For $K=2$ (which is rather
coarse) and $N=40$ (e.g., a ${}^{40}$Ca nucleus), we need $2^{40}
\approx 10^{12}$ data points! Describing the correlated motion of $N$
quantum particles is harder than the pioneers of quantum mechanics thought! Literally
\emph{thousands} of researchers worldwide are make a living out of
devising more or less clever schemes for finding approximate
solutions.
\subsection{More on the space $X$, and finite dimensional spaces}
The space $L^2(X)$ need not be infinite dimensional. Recall that
$\psi \in L^2(X)$ if and only of $\psi : X \to \CC$ and
\[ \|\psi\|^2 = \int |\psi(x)|^2 \; dx < +\infty. \]
Let
\[ X = \{ 1, 1, 2, \cdots, L \} \]
be a discrete set, such that the integral is a sum. For example, we
could discretize space using grid points, or a finite collection of
basis functions such as Hermite functions, finite element functions,
etc. Then $L^2(X)$ consists of functions $\psi : X \to \CC$, i.e.,
functions from the integers $1,\ldots,L$ to $\CC$. But this is just
an ordinary vector in $\CC^L$! The integral becomes
\[ \|\psi\|^2 = \sum_{i=1}^L |\psi_i|^2, \] which is always finite.
Thus, using counting measure on this particular $X$, $L^2(X) \simeq \CC^L$.
\subsection{The manybody Hamiltonian}
Having introduced the wavefunction, we now consider the Hamiltonian.
In this course, we shall consider only Hamiltonians on the following
generic form:
\begin{equation}
\begin{split}
\hat{H} &= \sum_{i=1}^N \hat{h}(i) + \frac{1}{2}\sum_{\substack{i,j=1\\i\neq j}}^N
\hat{w}(i,j) \\
&= \hat{H}_0 + \hat{W}.
\end{split}
\end{equation}
where $\hat{h}(i)$ denotes a single-particle operator acting only on
the degrees of freedom of particle $i$, and $\hat{w}(i,j)$ denotes a
two-body operator that acts only on the degrees of freedom of the
\emph{pair} $(i,j)$, $i\neq j$.
Of course, one could consider three-body forces as well, and even
higher. Such occur in nuclear physics.
Let us take the Hamiltonian of an atom in the Born--Oppenheimer
approximation as an example.
The Hamiltonian for a free electron is just its kinetic energy,
\begin{equation}
\hat{t} = \frac{1}{2m_e} p^2 = \frac{1}{2m_e}
(-i\hbar\nabla)^2 = -\frac{\hbar^2}{2m_e}\nabla^2.
\end{equation}
If it is moving in an external field, such as the Coulomb field set up
by an atomic nucleus of charge $+Ze$ at the location $\vec{R}$, we
obtain the total single-particle Hamiltonian
\begin{equation}
\hat{h} = \hat{t} + \hat{v} =
-\frac{\hbar^2}{2m_e}\nabla^2 - \frac{Ze^2}{\|\vec{R}-\vec{r}\|}.
\end{equation}
The Hamiltonian for a system of $N$ electrons, neglecting
inter-electronic interactions, becomes
\begin{equation}
\hat{H}_0 = \sum_{i=1}^N \hat{h}(i) = \sum_{i=1}^N
\left[-\frac{\hbar^2}{2m_e} \nabla_i^2 -\frac{Ze^2}{|\vec{r}_i - \vec{R}|}\right].
\end{equation}
The electron pair $(i,j)$ interacts via the Coulomb force:
\begin{equation}
w(i,j) = \frac{e^2}{|\vec{r}_i - \vec{r}_j|}.
\end{equation}
Thus,
\begin{equation}
\hat{W} = \frac{1}{2}\sum_{\substack{i,j=1\\i\neq j}}^N w(i,j) =
\frac{1}{2}\sum_{\substack{i,j=1\\i\neq j}}^N \frac{e^2}{|\vec{r}_i -
\vec{r}_j|}.
\end{equation}
\subsection{Separation of variables}
If we neglect the two-body part $\hat{W}$ of the Hamiltonian, we may
``solve'' the TISE by separation of variables. We do this now as a
preliminary step, before we discuss the consequences of the particles
being indistinguishable.
We seek an eigenfunction $\Psi \in L^2(X^N)$ to the non-interacting Hamiltonian $\hat{H}_0$.
Write
\begin{equation}
\Psi(x_1,\cdots,x_N) = \psi_1(x_1)\psi_2(x_2) \cdots \psi_N(x_N).
\end{equation}
Plug in to the TISE and divide by $\Psi$ to get
\begin{equation}
\sum_i \psi_i^{-1}[h(i)\psi_i] = E.
\end{equation}
The right hand side is a constant. The left hand side is a sum of
functions $f_1 + f_2 + \cdots f_N$, $f_i = f_i(x_i)$. This can only
sum to a constant if $f_i(x_i)$ is a constant,
\begin{equation}
\hat{h}\psi_i(x) = \epsilon_i \psi_i(x),
\end{equation}
which is just the TISE for a single particle! Thus, for any collection
of $N$ eigenvalues of the single-particle problem, we get a solution
of the $N$ particle problem.
We obtain that the total eigenfunction is
\begin{equation}
\Psi(x_1,x_2,\cdots,x_N) = \psi_{i_1}(x_1)\psi_{i_2}(x_2)\cdots\psi_{i_N}(x_N)
\end{equation}
with eigenvalue
\begin{equation}
E = \epsilon_{i_1} + \cdots + \epsilon_{i_N}.
\end{equation}
One can also show that the converse is true: any eigenfunction $\Psi$
can be taken on the above form.
\subsection{Permutations}
Are you unfamiliar with permutations? Ask me, and I will add some
paragraphhs here.
\subsection{Particle statistics}
Our particles are identical, or indistinguishable. There is abundant
evidence that all elementary particles must be treated as such. That
means that our probability density must be \emph{permutation
invariant} in the following sense: let $\sigma \in S_N$ be a
permutation of $N$ indices, and let $(x_1,\cdots,x_N)\in X^N$ be a
configuration of the $N$ particles. Then we must have
\begin{equation}
|\Psi(x_1,x_2,\cdots,x_N)|^2 = |\Psi(x_{\sigma(1)}, x_{\sigma(2)},\cdots,
x_{\sigma(N)})|^2.
\end{equation}
This is equivalent to
\begin{equation}
\Psi(x_1,\cdots,x_N) = e^{i\alpha} \Psi(x_{\sigma(1)}, x_{\sigma(2)},\cdots,
x_{\sigma(N)})
\end{equation}
for some real $\alpha$, that may depend on $\sigma$. (Clearly, our
separation of variables eigenfunctions do not satisfy this!)
Define a linear operator $\hat{P}_\sigma$ via
\begin{equation}
(\hat{P}_\sigma\Psi)(x_1,\cdots,x_N) = \Psi(x_{\sigma(1)}, x_{\sigma(2)},\cdots,
x_{\sigma(N)}),
\end{equation}
that is, the operator that evaluates $\Psi$ at permuted
coordinates. We have reformulated particle indistinguishability as:
$\Psi$ is an eigenfunction of $\hat{P}_\sigma$ for every $\sigma\in
S_N$, with eigenvalue possibly depending on $\sigma$.
One can show (see the exercises), that either $P_\sigma \Psi = \Psi$ for every $\sigma\in
S_N$, or $P_\sigma\Psi = (-1)^{|\sigma|}\Psi$ for every $\sigma\in
S_N$, where $|\sigma|$ is the number of transpositions in $\sigma$,
and thus $(-1)^{|\sigma|}$ is the sign of the permutation. In the
former case, $\Psi$ is ``totally symmetric with respect to
permutations'', and in the latter case, ``totally anti-symmetric''.
It is a \emph{postulate} that particles occuring in quantum theory (in
three-dimensional space) are of one of two types: bosons or
fermions. Bosons have totally symmetric wavefunctions only, and
fermions have totally anti-symmetric wavefunctions only. To cite
Leinaas and Myrheim \cite{Leinaas1977}, ``The physical consequences of
this postulate seem to be in good agreement with experimental data.''
Wolfgang Pauli proved (using relativistic considerations) that
wavefunctions of half-integral \emph{spin} must be anti-symmetric, and
wavefunctions of particles with integral spin must be symmetric,
connecting the postulate with the intrinsic spin of particles. To this
day, no particles with other spin values have been found.
In this course, we focus on fermions. See, e.g.,
\cite{GRH} for the general case.
\begin{exercise}
In this exercise, we prove that if $\Psi\in L^2(X^N)$ is an
eigenfunction for all $\hat{P}_\sigma$, then the eigenvalue is
either 1 or $(-1)^{|\sigma|}$.
We introdice transpositions: $\tau \in S_N$ is transposition if it
exhanges only a single pair $(i,j)$, $i\neq j$. Write $\hat{P}_{ij}
\equiv \hat{P}_\tau$.
Assume that $\Psi\in L^2(X^N)$ is such that, for all $\sigma\in
S_N$,
\[ \hat{P}_\sigma \Psi = s_\sigma \Psi, \quad s_\sigma =
e^{i\alpha(\sigma)}. \]
Show that $\hat{P}_{ij}^2 = 1$, and find all the possible eigenvalues of $\hat{P}_{ij}$.
Under the assumption on $\Psi$, show that if $s_{ij}$ is the
eigenvalue of $\hat{P}_{ij}$,
\[ \hat{P}_{ij} \Psi = s_{ij} \Psi, \]
then, for any other pair $(i',j')$, the eigenvalue is $s_{ij} =
s_{i'j'}$. You will probably need to use the group theoretical
properties of permutations.
We have established that the eigenvalue of a transposition is a
characteristic of $\Psi$, let $s = s_{ij}$. Compute the
eigenvalue of $P_\sigma$ for arbitrary $\sigma$ in terms of $s$.
\end{exercise}
\begin{exercise}
Let
\[ \hat{H} = \sum_{i=1}^N \hat{h}(i) + \sum_{(i,j)} \hat{w}(i,j).\]
Show that $\hat{H}$ commutes with $P_\sigma$ for any
permutation $\sigma \in S_N$, i.e., show that for \emph{any} wavefunction
$\Psi \in L^2(X^N)$,
\begin{equation}
\hat{H}P_\sigma \Psi = P_\sigma \hat{H} \Psi.
\end{equation}
\end{exercise}
\begin{exercise}
In this exercise, we consider $X = \RR^3$, i.e., no spin.
Consider each of the below functions.
\begin{enumerate}
\item
$\Psi(\vec{r}_1,\vec{r}_2) = e^{-\alpha|\vec{r}_1 - \vec{r}_2|}$.
\item
$\Psi(\vec{r}_1, \vec{r}_2) = \sin(\vec{e}_z \cdot(\vec{r}_1 -
\vec{r}_2))$, where $\vec{e}_z$ is the unit vector in the
$z$-direction.
\item
$\Psi(\vec{r}_1,\vec{r}_2,\vec{r}_3) =
\sin[\vec{r}_1\cdot(\vec{r}_2\times\vec{r}_3)] e^{-|\vec{r}_1|^2}
e^{-|\vec{r}_2|^2} e^{-|\vec{r}_3|^2}$
\end{enumerate}
Answer the following questions, per function:
Is the function totally symmetric with respect to particle permutations?
Is the function totally antisymmetric with respect to particle
permutations?
Is the function square integrable?
\end{exercise}
\subsection{Slater determinants}
The set of totally antisymmetric wavefunctions $L^2(X^N)_\text{AS}$ in
$L^2(X^N)$ form a \emph{closed
subspace} of Hilbert space: it is a linear space which is
complete. Thus $L^2(X^N)_\text{AS}$ is a Hilbert space in its own
right, and from our perspective it is the ``true'' Hilbert space of
$N$ identical fermions.
The antisymmetry of a wavefunction of $N$ coordinates is a quite
complicated constraint. We are also used to orthonormal bases, and it
may seem daunting to come up with such a basis which is also
antisymmetric. Slater determinants are the solution.
\begin{exercise}
Prove that $L^2(X^N)_\text{AS}$ is a linear space. Additionally, if
you have the mathematical background, prove that it is a closed
subspace using the Hilbert space metric.
\end{exercise}
The original space has a tensor product representation:
\begin{equation}
L^2(X^N) = L^2(X) \otimes L^2(X) \otimes \cdots \otimes L^2(X) \quad
\text{($N$ factors)}. \label{eq:tensor}
\end{equation}
Here, $L^2(X)$ is the Hilbert space of a single fermion. Let us assume
that we have an orthonormal basis (ONB) $\phi_1$, $\phi_2$, $\cdots$,
for this space, such that we can expand any $\psi \in L^2(X)$ as
\begin{equation}
\psi(x) = \sum_\mu c_\mu \phi_\mu(x),
\end{equation}
with
\begin{equation}
\braket{\phi_\mu|\phi_\nu} = \delta_{\mu,\nu}
\end{equation}
and
\begin{equation}
\|\psi\|^2 = \sum_\mu |c_\mu|^2.
\end{equation}
Thus, $\psi(x)$ is represented by an (infinite) vector $[c_\mu] = (c_1,c_2,\cdots)$.
Because of Eq.~\eqref{eq:tensor}, we may construct a basis for
$L^2(X^N)$ by \emph{tensor products},
\begin{equation}
\tilde{\Phi}_{\mu_1,\cdots,\mu_N}(x_1,\cdots,x_N) = \phi_{\mu_1}(x_1)\phi_{\mu_2}(x_2)\cdots\phi_{\mu_N}(x_N).
\end{equation}
Any $\Psi \in L^2(X^N)$ can be written
\begin{equation}
\Psi(x_1,\cdots,x_N) = \sum_{\mu_1}\cdots\sum_{\mu_N}
c_{\mu_1,\cdots,\mu_N} \tilde{\Phi}_{\mu_1,\cdots,\mu_N}(x_1,\cdots,x_N),
\end{equation}
with
\begin{equation}
\braket{\tilde{\Phi}_{\mu_1,\cdots,\mu_N}|\tilde{\Phi}_{\nu_1,\cdots,\nu_N}} = \delta_{\mu_1,\nu_1}\cdots\delta_{\mu_N,\nu_N}.
\end{equation}
In the $N=2$ case, we see that $\Psi(x_1,x_2)$ can be represented by
an infinite \emph{matrix} $[c_{\mu_1\mu_2}]$, and in the $N=3$ case a
3D matrix, and so on.
Remark: Compare this with the separation-of-variables treatment. If
the set of eigenfunctions $\psi_i\in L^2(X)$ of $\hat{h}$ is complete,
our separation of variables eigenfunctions $\Psi =
\psi_1\psi_2\cdots\psi_N$ form a complete set too.
Another remark: For arbitrary $N$, the tensor product basis described
\emph{can be counted}. For arbitrary $N$, let us introduce a generic
index, a multiindex, $k = (\mu_1,\cdots,\mu_N)$. There is
a one-to-one mapping between multiindices and the natural
numbers $\NN = \{0,1,2,\ldots\}$. Thus, writing $\xi = (x_1,\cdots,x_N)$
\begin{equation}
\Psi(\xi) = \sum_k c_k \tilde{\Phi}(\xi), \quad
\braket{\tilde{\Phi}_k|\tilde{\Phi}_\ell} = \delta_{k,\ell}
\end{equation}
all the various $N$ are represented with the same formula. There is nothing
special about $c$ being a vector, a matrix, a 3D matrix, etc. They
are all fundamentally equivalent, since the basis set can be counted.
Important message so far: a single-particle basis set $\{\phi_\mu\}$
can be used to construct a basis for $L^2(X^N)$.
What about or ``actual'' Hilbert space, $L^2(X^N)_\text{AS}$? Can we
construct a basis for this using our single-particle basis? Yes, this
is the role of \emph{Slater determinants}.
What is the simplest totally antisymmetric wavefunction we can create,
starting with some single-particle functions?
If we start with $N=2$, and consider the product
$\phi_1(x_1)\phi_2(x_2)$, this is not anti-symmetric. But if we
consider the linear combination
\begin{equation}
\Phi(x_1,x_2) = \phi_1(x_1)\phi_2(x_2) - \phi_2(x_1)\phi_1(x_2),
\end{equation}
this is antisymmetric if we exchange $x_1$ and $x_2$. Continuing with
$N=3$, we quickly realize that in order to obtain something
antisymmetric out of $\phi_1(x_1)\phi_2(x_2)\phi_3(x_3)$, we must take
the linear combination
\begin{equation}
\begin{split}
\Phi(x_1,x_2,x_3) &= \phi_1(x_1)\phi_2(x_2)\phi_3(x_3) -
\phi_2(x_1)\phi_1(x_2)\phi_3(x_3) -
\phi_1(x_1)\phi_3(x_2)\phi_2(x_3) -\\
& \phi_3(x_1)\phi_2(x_2)\phi_1(x_3) +
\phi_2(x_1)\phi_3(x_2)\phi_1(x_3) +
\phi_3(x_1)\phi_1(x_2)\phi_2(x_3),
\end{split}
\end{equation}
each term representing a permutation of the indices $(123)$. There is
nothing special about $(123)$ of course, $(\mu_1\mu_2\mu_3)$ also
works. Note that if one of these indices are equal, then the whole
linear combniation is zero as well.
The generalization to $N$ indices is in fact a \emph{determinant}, and
we make a definition:
\begin{definition}
Let $\phi_1$, $\phi_2$, \ldots, $\phi_N$ be arbitrary
single-particle functions in $L^2(X)$ (not necessarily
orthonormal). The \emph{Slater determinant} defined by these
functions is denoted by $[\phi_1\phi_2\cdots\phi_N]$, and is defined via the formula
\begin{equation}
\begin{split}
[\phi_1,\phi_2,\cdots,\phi_N](x_1,\cdots,x_N) &= \frac{1}{\sqrt{N!}} \begin{vmatrix}
\phi_1(x_1) & \phi_1(x_2) & \cdots & \phi_1(x_N) \\
\phi_2(x_1) & \phi_2(x_2) & \cdots & \phi_2(x_N) \\
\vdots & \vdots & \ddots & \vdots \\
\phi_N(x_1) & \phi_N(x_2) & \cdots & \phi_N(x_N) \\
\end{vmatrix}\label{eq:slater} \\
&= \frac{1}{\sqrt{N!}} \sum_{\sigma\in S_N}
(-1)^{|\sigma|} \prod_{i=1}^N \phi_{\sigma(i)}(x_i)\\
&= \frac{1}{\sqrt{N!}} \sum_{\sigma\in S_N}
(-1)^{|\sigma|} \prod_{i=1}^N \phi_{i}(x_{\sigma(i)})
\end{split}
\end{equation}
\end{definition}
Note: the $1/\sqrt{N!}$ is there for normalization purposes, see
later. The second formula in the definition follows from the theory of
matrix determinants.
% \begin{equation}
% \Phi_{12\cdots N}(x_1,\cdots,x_N) = \frac{1}{\sqrt{N!}} \begin{vmatrix}
% \phi_1(x_1) & \phi_1(x_2) & \cdots & \phi_1(x_N) \\
% \phi_2(x_1) & \phi_2(x_2) & \cdots & \phi_2(x_N) \\
% \vdots & \vdots & \ddots & \vdots \\
% \phi_N(x_1) & \phi_N(x_2) & \cdots & \phi_N(x_N) \\
% \end{vmatrix}\label{eq:slater}
% \end{equation}
% where we have included a prefactor for normalization
% purposes. Algebraically, we obtain from the theory of determinants,
% \begin{equation}
% \Phi_{12\cdots N}(x_1,\cdots,x_N) = \frac{1}{\sqrt{N!}} \sum_{\sigma\in S_N}
% (-1)^{|\sigma|} \prod_{i=1}^N \phi_{\sigma(i)}(x_i). \label{eq:slateralg}
% \end{equation}
% So far, we have \emph{not used} in any way, the fact that
% $\{\phi_\mu\}$ form an orthonormal set. Thus, the Slater determinant
% is well-defined for \emph{any} collection of $N$ single-particle
% functions. We introduce the following notation for a general Slater
% determinant:
% \begin{definition}
% Let $\phi_1$, $\phi_2$, \ldots, $\phi_N$ be arbitrary
% single-particle functions in $L^2(X)$. These define a \emph{Slater
% determinant} $[\phi_1\phi_2\cdots\phi_N]$ via the formula
% \begin{equation}
% \begin{split}
% [\phi_1,\phi_2,\cdots,\phi_N](x_1,\cdots,x_N) &= \frac{1}{\sqrt{N!}} \begin{vmatrix}
% \phi_1(x_1) & \phi_1(x_2) & \cdots & \phi_1(x_N) \\
% \phi_2(x_1) & \phi_2(x_2) & \cdots & \phi_2(x_N) \\
% \vdots & \vdots & \ddots & \vdots \\
% \phi_N(x_1) & \phi_N(x_2) & \cdots & \phi_N(x_N) \\
% \end{vmatrix}\label{eq:slater-def} \\
% &= \frac{1}{\sqrt{N!}} \sum_{\sigma\in S_N}
% (-1)^{|\sigma|} \prod_{i=1}^N \phi_{\sigma(i)}(x_i)
% \end{split}
% \end{equation}
% \end{definition}
\begin{exercise}\label{exercise:slater0}
Show that the two last lines in Eq.~\eqref{eq:slater} are
equivalent. This requires some manipulation of permutations.
\end{exercise}
% \begin{exercise}\label{exercise:slater1}
% Show that
% \begin{equation}
% [\phi_2\phi_1\phi_3\phi_4\cdots\phi_{\sigma(N)}] =
% -[\phi_1\phi_2\phi_3\phi_4\cdots\phi_N].
% \end{equation}
% Next, show that if $\sigma\in S_N$ is a permutation, then
% \begin{equation}
% [\phi_{\sigma(1)}\phi_{\sigma(2)}\cdots\phi_{\sigma(N)}] =
% (-1)^{|\sigma|} [\phi_1\phi_2\cdots\phi_N].
% \end{equation}
% \end{exercise}
\begin{exercise}\label{exercise:slater3}
Let $A$ be an $N\times N$ matrix. Let $\phi_j$, $j=1,\cdots,N$ be
given single-particle functions, and let $\psi_k$, $k=1,\cdots,N$ be
defined by
\begin{equation}
\psi_k = \sum_j \phi_j A_{jk}.
\end{equation}
Prove that
\begin{equation}
[\psi_1,\psi_2,\cdots,\psi_N] =
\det(A)[\phi_1,\phi_2,\cdots,\phi_N].
\end{equation}
(Hint: use antisymmetry of Slater determinants with respect to
permutations of single-particle functions, and the expression
$\det(A) = \sum_{\sigma\in S_N} (-1)^{|\sigma|}A_{1\sigma(1)}A_{2\sigma(2)}
\cdots A_{N\sigma(N)}.$)
\end{exercise}
\begin{exercise}\label{exercise:slater2}\note{This exercise has been
updated since it was given as part of Problem set 1 (H2015). The
assumption that the indices were sorted was added.}
Suppose that $\{\phi_\mu\}$, $\mu=1,2,\cdots$ are orthonormal. Prove
that $\Phi_{\mu_1,\cdots,\mu_N} =
[\phi_{\mu_1}\phi_{\mu_2},\cdots,\phi_{\mu_N}]$ is normalized,
\[ \braket{\Phi_{{\mu_1\mu_2\cdots \mu_N}}|\Phi_{{\mu_1\mu_2\cdots \mu_N}}} = 1. \]
Prove that
\[ \braket{\Phi_{\mu_1\mu_2\cdots
\mu_N}|\Phi_{\nu_1\nu_2\cdots\nu_N}} = \delta_{\mu_1\nu_1}\cdots
\delta_{\mu_N\nu_N}, \]
under the assumption that $\vec{\mu}$ and $\vec{\nu}$ are sorted in
increasing order. What do you get for the inner product if the indices are not sorted?
% Find a basis for $L^2(X^N)_\text{AS}$. (Hint: not all Slater
% determinants are linearly independent, see
% Exercise~\ref{exercise:slater1}.)
\end{exercise}
Observation: Determinant properties imply that permutation of particle
indices gives sign change. Permutation of function indices gives
sign change:
\begin{equation}
[\phi_1,\cdots,\phi_i,\cdots,\phi_j,\cdots,\phi_N] =
-[\phi_1,\cdots,\phi_j,\cdots,\phi_i,\cdots,\phi_N]
\end{equation}
\begin{equation}
[\phi_1,\cdots,\phi_N](x_1,\cdots,x_i,\cdots,x_j,\cdots,x_N) =
-[\phi_1,\cdots,\phi_N](x_1,\cdots,x_j,\cdots,x_i,\cdots,x_N).
\end{equation}
Moreover, two equal rows (i.e., equal function indices) means that two
of the single-particle functions are identical, giving a vanishing
determinant.
If two \emph{columns} in Eq.~\eqref{eq:slater} are identical, the
determinant vanishes. Two columns equal mean that we evaluate at some
$x_i = x_j$. \emph{This is the Pauli
exclusion principle.}
\begin{theorem}
Let $\{\phi_\mu\}$ be an orthonormal basis for
$L^2(X)$. Then, any $\Psi \in L^2(X^N)_\text{AS}$ can be expanded in
the Slater determinants
\begin{equation}
[\phi_{\mu_1},\phi_{\mu_2},\cdots,\phi_{\mu_N}].
\end{equation}
Moreover, if we choose an ordering of the indices $\mu$, the Slater
determinants satisfying $\mu_1<\mu_2<\cdots<\mu_N$ form an
orthonormal basis for $L^2(X^N)_\text{AS}$.
\end{theorem}
\begin{proof}
Step 1: Expand $\Psi$ in the tensor product basis.
\begin{equation}
\Psi(x_1,\cdots,x_N) = \sum_{\mu_1,\cdots,\mu_N} c_{\mu_1,\cdots,\mu_N}
\tilde{\Phi}_{\mu_1,\cdots,\mu_N}(x_1,\cdots,x_N).
\end{equation}
Step 2: Show that the coefficients $c_{\vec{\mu}}$ are antisymmetric
under permutation. For simplicity, consider a transposition of $i$ with
$j$, $i<j$:
\begin{equation}
\begin{split}
\hat{P}_{ij}\Psi(x_1,\cdots,x_N)
&= \sum_{\mu_1,\cdots,\mu_N} c_{\mu_1,\cdots,\mu_N}
\hat{P}_{ij} \tilde{\Phi}_{\mu_1,\cdots,\mu_N}(x_1,\cdots,x_i,\cdots,x_j,\cdots,x_N) \\
&= \sum_{\mu_1,\cdots,\mu_N} c_{\mu_1,\cdots,\mu_N}
\tilde{\Phi}_{\mu_1,\cdots,\mu_N}(x_1,\cdots,x_j\cdots,x_i,\cdots,x_N) \\
&= \sum_{\mu_1,\cdots,\mu_N} c_{\mu_1,\cdots,\mu_N}
\tilde{\Phi}_{\mu_1,\cdots,\mu_j,\cdots,\mu_i,\cdots,\mu_N}(x_1,\cdots,x_N) \\
&= \sum_{\mu_1,\cdots,\mu_N} c_{\mu_1,\cdots,\mu_j,\cdots,\mu_i,\cdots,\mu_N}
\tilde{\Phi}_{\mu_1,\cdots,\mu_N}(x_1,\cdots,x_N) \\
&= -\sum_{\mu_1,\cdots,\mu_N} c_{\mu_1,\cdots,\mu_N}
\tilde{\Phi}_{\mu_1,\cdots,\mu_N}(x_1,\cdots,x_N)
\end{split}
\end{equation}
Projecting the two last inequalities onto
$\tilde{\Phi}_{\nu_1,\cdots,\nu_N}$ gives
\begin{equation}
c_{\nu_1,\cdots,\nu_j,\cdots,\nu_i,\cdots,\nu_N} = - c_{\nu_1,\cdots,\nu_i,\cdots,\nu_j,\cdots,\nu_N}.
\end{equation}
We decompose an arbitrary $\sigma\in S_N$ into transpositions, and obtain
\begin{equation}
c_{\mu_{\sigma(1)},\mu_{\sigma(2)},\cdots,\mu_{\sigma(N)}} =
(-1)^{|\sigma|} c_{\mu_1,\cdots,\mu_N}.
\end{equation}
Step 3: Rearrange summation so that we exhibit $\Psi$ as a linear
combination of Slater determinants.
Note that we can write
\begin{equation}
\sum_{\mu_1,\cdots\mu_N} f(\mu_1,\cdots,\mu_N) = \sum_{\mu_1<\mu_2<\cdots<\mu_N}
\sum_{\sigma\in S_N} f(\mu_{\sigma(1)},\cdots,\mu_{\sigma(N)}),
\end{equation}
splitting the summation over \emph{ordered} multiindices and
permutations of these. We now get
\begin{equation}
\begin{split}
\Psi &= \sum_{\mu_1<\cdots<\mu_N} \sum_\sigma (-1)^{|\sigma|}
c_{\mu_1,\cdots,\mu_N}
\tilde{\Phi}_{\mu_{\sigma(1)},\mu_{\sigma(2)},\cdots,\mu_{\sigma(N)}} \\
&=\sum_{\mu_1<\cdots<\mu_N} (\sqrt{N!} c_{\mu_1,\cdots,\mu_N})
\frac{1}{\sqrt{N!}} \sum_\sigma (-1)^{|\sigma|}
\tilde{\Phi}_{\mu_{\sigma(1)},\mu_{\sigma(2)},\cdots,\mu_{\sigma(N)}} \\
&= \sum_{\mu_1<\cdots<\mu_N} (\sqrt{N!} c_{\mu_1,\cdots,\mu_N})
[\phi_{\mu_1},\cdots,\phi_{\mu_N}].
\end{split}
\end{equation}
This in fact proves that the Slater determinants, when we only use
ordered indices, are sufficient to expand any $\Psi
L^2(X^N)_\text{AS}$. Clearly, if we omit one such Slater determinant,
not all $\Psi$ can be expanded. (In particular, this omitted Slater
determinant cannot be expanded in the rest!) Thus, the Slater
determinants with ordered indices form a basis.
\end{proof}
\begin{exercise}
How many terms are there in
$[\phi_1\phi_2\phi_3\phi_4](x_1,x_2,x_3,x_4)$, when expanded as a
linear combination of tensor products? Write down the expansion
explicitly.
\end{exercise}
\begin{exercise}
In this exercise, we define the antisymmetrization operator $\mathscr{A}$ as
\begin{equation}
\mathscr{A} = \frac{1}{N!} \sum_{\sigma \in S_N} (-1)^{|\sigma|}
\hat{P}_\sigma.\label{eq:antisym}
\end{equation}
Now,
\begin{equation}
[\phi_1,\cdots,\phi_N] = \sqrt{N!} \mathscr{A} \phi_1(x_1)\cdots\phi_N(x_N).
\end{equation}
An operator $U$ is an orthogonal projector if and only if $U^2=U$
and $U^\dag = U$.
Prove that $\mathscr{A}$ is an orthogonal projector from $L^2(X^N)$
onto $L^2(X^N)_\text{AS}$.
\end{exercise}
\section{Second quantization}
\subsection{The creation and annihilation operators}
In this section, we introduce the following shorthand:
\begin{equation}
L^2_N \equiv L^2(X^N)_\text{AS}
\end{equation}
since the space $X$ is understood from context, and since we only deal
with fermion spaces. We also introduce the bra/ket notation for
wavefunctions.
Recall that a basis for $L^2_N$ could be formed from an orthonormal
basis $\{\phi_\mu\}$ of $L^2(X)$, by computing a set of Slater
determinants $\Phi_{\mu_1,\cdots,\mu_N} = [\phi_{\mu_1},\cdots,\phi_{\mu_N}]$, where
$\mu_1<\mu_2<\cdots<\mu_N$ were \emph{ordered}. (If we permute the
index set, we get the same function with a possible sign change, so it
is not an additional basis function.)
So far we have emphasized that $[\phi_{\mu_1},\cdots,\phi_{\mu_N}]$
were \emph{functions}, but in quantum mechanics the bra/ket notation
is useful. We therefore introduce the ket notation
\begin{equation}
\ket{\psi_1,\cdots,\psi_N} = [\psi_1,\cdots,\psi_N]
\end{equation}
for an arbitrary Slater determinant. When $\{\phi_\mu\}$ is a
single-particle basis, we may choose to suppress all the $\phi$'s
everywhere, and write
\begin{equation}
\ket{\vec{\mu}} = \ket{\mu_1\mu_2\cdots\mu_N}, \quad
% \Phi_{\mu_1\cdots\mu_N}(x_1,\cdots,x_N) =
[\phi_{\mu_1},\cdots,\phi_{\mu_N}](x_1,\cdots,x_N) = \braket{x_1\cdots x_N|\mu_1\cdots\mu_N}
\end{equation}
for a Slater determinant. If
$\mu_i=\mu_j$ then $\ket{\vec{\mu}} = 0$ is the zero vector. We recall
the antisymmetry properties,
\begin{equation}
\hat{P}_{ij}\ket{\mu_1\cdots\mu_i\cdots\mu_j\cdots\mu_N} =
-\ket{\mu_1\cdots\mu_j\cdots\mu_i\cdots\mu_N}
\end{equation}
and more generally
\begin{equation}
\hat{P}_\sigma \ket{\mu_1\cdots\mu_N} = (-1)^{|\sigma|} \ket{\mu_{\sigma(1)}\cdots\mu_{\sigma(N)}}.
\end{equation}
For any $\ket{\Psi}\in L^2_N$, we have the basis expansion
\begin{equation}
\ket{\Psi} = \sum_{\vec{\mu}}^\sim \ket{\vec{\mu}}\braket{\vec{\mu}|\Psi}
\end{equation}
connecting with the earlier treatment. The $\sim$ means that we sum
\emph{only over ordered sets of indices}. As we saw earlier, the
coefficients $\braket{\vec{\mu}|\Psi}$ are permutation antisymmetric.
So far, we have used Greek letters $\mu$, $\nu$, etc., as
single-particle indices. There is nothing special about this, of
course. We will later also use $p$, $q$, $r$, etc.
Looking at the determinant \eqref{eq:slater}, we see that by adding a
row containing the index $\nu$, and a column with coordinate
$x_{N+1}$, we obtain an $N+1$ particle Slater determinant (modulo a
constant factor):
\begin{equation}
\braket{x_1\cdots x_{N+1}|\nu\mu_1\mu_2\cdots\mu_N} = \frac{1}{\sqrt{(N+1)!}} \begin{vmatrix}
\phi_{\nu}(x_1) & \phi_{\nu}(x_2) & \cdots & \phi_{\nu}(x_N) & \phi_{\nu}(x_{N+1}) \\
\phi_{\mu_1}(x_1) & \phi_{\mu_1}(x_2) & \cdots & \phi_{\mu_1}(x_N) & \phi_{\mu_1}(x_{N+1}) \\
\phi_{\mu_2}(x_1) & \phi_{\mu_2}(x_2) & \cdots & \phi_{\mu_2}(x_N)
& \phi_{\mu_2}(x_{N+1}) \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\phi_{\mu_N}(x_1) & \phi_{\mu_N}(x_2) & \cdots & \phi_{\mu_N}(x_N)
& \phi_{\mu_N}(x_{N+1})\\
\end{vmatrix}
\end{equation}
Similarly, we can remove a row and column, and obtain an $N-1$
particle Slater determinant.
This inspires the \emph{creation and annihilation operators}, that
map wavefunctions between different particle number spaces:
\begin{gather}
c^\dag_\nu : L^2_N \to L^2_{N+1} \\
c_\nu : L^2_N \to L^2_{N-1}
\end{gather}
The operator $c^\dag_\nu$ is called \emph{a creation operator} and is,
roughly defined, by inserting a row and column as described. The
operator $c_\nu$ is the Hermitian adjoint of $c^\dag_\nu$, and it will
be shown that its action on a Slater determinant corresponds to the
mentioned removal of a row and column.
We \emph{define} the space $L^2_0$ -- the zero particle space --
as a one-dimensional space spanned by the special ket $\ket{-}$, the
\emph{vacuum state}. There is nothing mysterious about this, it is
just a definition that will be useful later. Note that $\ket{-} \neq 0$.
Recall that a linear operator is fully defined when we specify its
action on a basis set. This is how we define $c^\dag_\mu$ and $c_\mu$.
Definition of the creation operator: For every single-particle index
$\nu$, we define the creation operator $c^\dag_\nu$ acting on the
vacuum state by
\begin{equation}
c^\dag_\nu \ket{-} = \ket{\nu}.
\end{equation}
Since this is a Slater determinant with a single particle, we have, of
course, $\braket{x|\nu} = \phi_\nu(x)$.
For an arbitrary Slater determinant with $N>0$, we define the action by
\begin{equation}
c^\dag_\nu\ket{\mu_1\cdots\mu_N} \equiv \ket{\nu\mu_1\cdots\mu_N}.
\end{equation}
We observe already that if there is a $j$ such that $\nu = \mu_j$,
then $\ket{\nu\mu_1\cdots\mu_N} \equiv 0$:
\begin{equation}
\hat{P}_{1j} \ket{\nu\vec{\mu}} = -\ket{\nu\vec{\mu}} =
\ket{\nu\vec{\mu}} = 0, \quad \nu = \mu_j.
\end{equation}
In terms of determinant coordinate expressions as in Eq.~\eqref{eq:slater}, $c^\dag_\nu$ inserts a
column on the far right with $x_{N+1}$ and inserts a row on the top
with the index $\nu$. Finally, the whole expression is renormalized.
[Recall that the basis Slater determinants were the determinants that had
\emph{ordered indices}. Assume that $\vec{\mu}$ is ordered. Clearly,
$c^\dag\ket{\vec{\nu}}$ is either zero or equal to
$(-1)^j\ket{\mu_1\mu_2\cdots\mu_j\nu\mu_{j+1}\cdots \mu_N}$, which is
a new basis determinant. Here, $j$ is chosen such that the augmented
index set is ordered.]
Let us now consider the \emph{annihilation operator}. There are no
particles to remove in the vacuum state, so we set
\begin{equation}
c_\nu \ket{-} \equiv 0.
\end{equation}
Let $\vec{\mu}$ be a multiindex. If $\nu=\mu_j$ for some $j$, we
define
\begin{equation}
c_\nu \ket{\vec{\mu}} \equiv
(-1)^{j-1} \ket{\mu_1\cdots\mu_{j-1}\mu_{j+1}\cdots\mu_N}.
\end{equation}
In terms of the coordinate determinant expression, this amounts to
moving the $j$th row to the top with $j-1$ transpositions, giving the sign factor, and
then crossing out the far right column and the first row, now
containing the index $\nu$. This moving of the $j$th row
may seem like a complication compared to the creation operator, but
note that for $c^\dag_\nu$ we defined its action by \emph{inserting
$\nu$ on the top}. Moving $\nu$ to the $(j+1)$th position will
induce a $(-1)^j$. But $c_\nu$ removes a row at an in principle
arbitrary location.
\begin{exercise}
Prove that $c^\dag_\alpha$ and $c_\alpha$ are Hermitian adjoints of each
other, as the notation suggests. Thus, for any $\vec{\mu}$ with $N$
indices, and $\vec{\nu}$ with $N+1$ indices, show that
\begin{equation}
\braket{\vec{\mu}|(c_\alpha|\vec{\nu}}) =
[\braket{\vec{\nu}|(c^\dag_\alpha|\vec{\mu}})]^*
\end{equation}
\end{exercise}
\subsection{Anticommutator relations}
Recall that the anticommutator of two operators is defined by
\begin{equation}
\{ \hat{A}, \hat{B} \} \equiv \hat{A}\hat{B} + \hat{B}\hat{A}.
\end{equation}
In this section, we prove three important anticommutation relations:
\begin{subequations}
\label{eq:anticommutator-relations}
\begin{align}
\{ c^\dag_{\nu_1}, c^\dag_{\nu_2} \} & = 0 \\
\{ c_{\nu_1}, c_{\nu_2} \} & = 0 \\
\{ c_{\nu_1}, c^\dag_{\nu_2} \} & = \delta_{\nu_1,\nu_2}. \label{eq:fundanti}
\end{align}
\end{subequations}
Equation~\eqref{eq:fundanti} is called the ``fundamental anticommutator''.
Let $\nu_1,\nu_2$ be a two single-particle indices, and let $N\geq 0$ be arbitrary.
By the properties of determinants, it is easy to see, that for any
$\ket{\vec{\mu}} \in L^2_N$,
\begin{equation}
c^\dag_{\nu_1} c^\dag_{\nu_2} \ket{\vec{\mu}} = -c^\dag_{\nu_2}
c^\dag_{\nu_1} \ket{\vec{\mu}}.
\end{equation}
Why? The right hand side is obtained by exchanging the two first rows
of the determinant on the left hand side.
Since this equation holds for any basis vector, we have shown that the
two creation operators \emph{anticommute}
\begin{equation}
\{ c^\dag_{\nu_1}, c^\dag_{\nu_2} \} \equiv c^\dag_{\nu_1}
c^\dag_{\nu_2} + c^\dag_{\nu_2} c^\dag_{\nu_1} = 0.
\end{equation}
Similarly, two annihilation operators anticommute,
\begin{equation}
\{ c_{\nu_1}, c_{\nu_2} \} \equiv c_{\nu_1}
c_{\nu_2} + c_{\nu_2} c_{\nu_1} = 0.
\end{equation}
We now prove that
\begin{equation}
\{ c_{\nu_1}, c^\dag_{\nu_2} \} \equiv c_{\nu_1} c^\dag_{\nu_2} +
c^\dag_{\nu_2} c_{\nu_1} = \delta_{\nu_1,\nu_2}. \label{eq:fundanti}
\end{equation}
Case 1: $\nu_1 = \nu_2 = \nu$. Consider the expression
\begin{equation}
c^\dag_\nu c_\nu \ket{\vec{\mu}}.
\end{equation}
Case 1a: $\nu = \mu_j$ for some $j$. We get
\begin{equation}
c^\dag_\nu c_\nu \ket{\mu_1\cdots\mu_N} = c^\dag_\nu (-1)^{j-1}
\ket{\mu_1\cdots\mu_{j-1}\mu_{j+1}\cdots\mu_N} = (-1)^{j-1}
\ket{\mu_j\mu_1\cdots\mu_{j-1}\mu_{j+1}\cdots\mu_N} =
\ket{\mu_1\cdots\mu_N}.
\end{equation}
We also get
\begin{equation}
c_\nu c^\dag_\nu \ket{\mu_1\cdots \mu_N} = c_\nu
\ket{\mu_j\mu_1\cdots\mu_j\cdots\mu_N} = 0.
\end{equation}
Case 1b: $\nu \notin \vec{\mu}$, $\nu$ is distinct from all the
$\mu_j$. In this case, $c_\nu\ket{\vec{\mu}} = 0$, so
\begin{equation}
c^\dag_\nu c_\nu \ket{\mu_1\cdots \mu_N} = 0.
\end{equation}