-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathslater-condon.tex
61 lines (54 loc) · 2.14 KB
/
slater-condon.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
\section{Slater--Condon rules}
We solve Exercise~\ref{exercise:slater-condon}, but we opt for using
Wick's Theorem, since it is not so tedious.
\subsection{a)}
Let $p_1<p_2<\cdots<p_N$ be single-particle indices, and we shall compute
\begin{equation}
\braket{p_1,\cdots,p_N|\hat{H}_0|p_1,\cdots,p_N}
\end{equation}
using Wick's Theorem.
We first compute
\begin{equation}
\braket{p_1,\cdots,p_N|q^\dag r|p_1,\cdots,p_N} = \bra{-}p_N
p_{N-1} \cdots p_1 q^\dag r p^\dag_1 p^\dag_2\cdots p^\dag_{N-1} p^\dag_N\ket{-}.
\end{equation}
We must sum over all fully contracted expressions. Here is a
non-vanishing contraction:
\begin{equation}
\braket{p_1,\cdots,p_N|q^\dag r|p_1,\cdots,p_N} = \bra{-}
\contraction[2ex]{}{p}{{}_N p_{N-1} \cdots p_2 p_1 q^\dag r p^\dag_1
p^\dag_2 \cdots p^\dag_{N-1}}{p}
\contraction[1.5ex]{p_N}{p}{{}_{N-1} \cdots p_2 p_1 q^\dag r p^\dag_1
p^\dag_2 \cdots }{p}
p_N
p_{N-1} \cdots \contraction{}{p}{{}_2 p_1 q^\dag r p^\dag_1}{p} p_2 \contraction[.5ex]{}{p}{{}_1}{q} p_1 q^\dag
\contraction[.5ex]{}{r}{}{p} r p^\dag_1 p^\dag_2\cdots p^\dag_{N-1}
p^\dag_N\ket{-} = \delta_{p_1 q} \delta_{p_1 r}.
\end{equation}
The contractions between $p_{N-2}$ and $p^\dag_{N-2}$, etc, are not
shown.
The other vanishing contractions are on a similar form, contracting
$q^\dag$ with some $p_j$, and $r$ with $p^\dag_j$. If we try other
combinations we get zero.
Thus,
\begin{equation}
\braket{p_1,\cdots,p_N|\hat{H}_0|p_1,\cdots,p_N} = \sum_{i=1}^N
\braket{p_i|\hat{h}|p_i}.
\end{equation}
We next consider the expectation value of $\hat{W}$, and therefore
consider the vacuum expectation value
\begin{equation}
\braket{p_1,\cdots,p_N|q^\dag r^\dag t s|p_1,\cdots,p_N} = \bra{-}p_N
p_{N-1} \cdots p_1 q^\dag r^\dag t s p^\dag_1 p^\dag_2\cdots
p^\dag_{N-1} p^\dag_N\ket{-}.
\end{equation}
Here is a nonvanishing contraction:
\begin{equation}
\bra{-}
\contraction[.5ex]{p_N p_{N-1} \cdots p_{3} p_2}{p}{{}_1}{q}
\contraction[1ex]{p_N p_{N-1} \cdots p_{3} }{p}{{}_2 p_1 q^\dag}{p}
\contraction[.5ex]
p_N p_{N-1} \cdots p_{3} p_2 p_1 q^\dag r^\dag t s p^\dag_1
p^\dag_2 p^\dag_3 \cdots p^\dag_{N-1} p^\dag_N
\ket{-}
\end{equation}