forked from HelgeS/tetraband
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
235 lines (196 loc) · 9.53 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
from __future__ import print_function
import argparse
import json
import os
import time
from datetime import datetime
import gym
from tqdm import tqdm
import pandas as pd
import agent
import envs
import feature_extractor
import random
import numpy as np
def main(args):
if not os.path.isdir(args.log_dir):
os.makedirs(args.log_dir)
if args.save_dir and not os.path.isdir(args.save_dir):
os.makedirs(args.save_dir)
if args.seed:
random.seed(args.seed)
np.random.seed(args.seed)
basename = envs.BASENAMES[args.environment]
env_name = '{basename}-{scenario}-{dataset}-v0'.format(
basename=basename,
scenario=args.scenario,
dataset=args.dataset
)
env = gym.make(env_name)
print("Environment {}".format(args.environment))
print(env.observation_space)
print(env.action_space)
if args.features == 'net':
extractor = feature_extractor.NetFeatureExtractor()
elif args.features == 'hash':
extractor = feature_extractor.ImageHashExtractor()
else:
raise NotImplementedError("Unknown feature extraction method '{}'".format(args.features))
if args.agent == "baseline":
# Special case -> handled somewhere else
baseline(env, args)
return
elif args.agent == "bandit":
actor = agent.BanditAgent(env, extractor) # VW
elif args.agent == "random":
actor = agent.RandomAgent(env)
obs = env.reset()
print(obs)
original_score = 0.0
modified_score = 0.0
totalreward = 0.0
totalsuccess = 0.0
iter_duration = 0.0
statistics = {}
for idx in range(env.action_space.n):
statistics[env.actions[idx][0]] = {
'action': env.actions[idx][0],
'count': 0,
'reward': 0.0,
'success': 0
}
if env.is_hierarchical_action(idx):
params = env.actions[idx][1]
for param_idx in range(env.hierarchical_actions[idx]['space'].n):
statistics[params[param_idx][0]] = {
'action': params[param_idx][0],
'count': 0,
'reward': 0.0,
'success': 0
}
log_file = '{timestamp}-{env}-{sc}-{agent}.json'.format(
timestamp=datetime.now().strftime("%Y%m%d%H%M%S"),
env=args.environment,
sc=args.scenario,
agent=args.agent)
log_file = os.path.join(args.log_dir, log_file)
for iteration in range(1, args.iterations + 1):
start = time.time()
act = actor.act(obs)
obs, reward, done, info = env.step(act)
actor.update(reward, done=done)
iter_duration += time.time() - start
action_name, param_name = env.get_action_name(act[0], act[1])
statistics[action_name]['count'] += 1
statistics[action_name]['reward'] += reward[0]
statistics[action_name]['success'] += reward[0] > 0
if param_name:
statistics[param_name]['count'] += 1
statistics[param_name]['reward'] += reward[1]
statistics[param_name]['success'] += reward[1] > 0
original_score += info['original_score']
modified_score += info['modified_score']
totalreward += reward[0]
totalsuccess += reward[0] > 0
if done:
obs = env.reset()
if (iteration % args.log_interval == 0) or iteration == args.iterations:
stat_string = ' | '.join(
["{:.2f} ({:.2f}/{:d})".format(v['success'] / (v['count'] + 1e-10), v['success'],
v['count']) for v in
statistics.values()])
print("i = {}".format(iteration), round(totalsuccess / iteration, 2),
round(original_score / iteration, 2),
round(modified_score / iteration, 2), '\t', stat_string)
log_dict = {
'env': args.environment,
'scenario': args.scenario,
'agent': args.agent,
'iteration': iteration,
'totalreward': totalreward,
'success': totalsuccess,
'statistics': statistics,
'original_accuracy': float(original_score) / iteration,
'modified_accuracy': float(modified_score) / iteration,
'duration': iter_duration / iteration
}
open(log_file, 'a').write(json.dumps(log_dict) + os.linesep)
def baseline(env, args):
export_file = "logs/baseline_{}_{}_{}.csv".format(args.environment, args.scenario, args.dataset)
env.random_images = False
env.reset()
if args.baseline_continue:
file_mod = 'a'
bl = pd.read_csv(export_file, sep=';')
exist_imgs = set(bl.iloc[:, 0].unique())
all_imgs = set(env.indices)
image_indices = sorted(all_imgs - exist_imgs)
else:
file_mod = 'w'
image_indices = sorted(env.indices)
with open(export_file, file_mod) as f:
if not args.baseline_continue:
if args.environment == 'classification':
print("image_id;action;parameter;action_reward;parameter_reward;success;original_score;modified_score;"
"original;prediction;label",
file=f)
else:
print("image_id;action;parameter;action_reward;parameter_reward;success;original_score;modified_score",
file=f)
for image_idx in tqdm(image_indices):
env.cur_image_idx = image_idx
results = env.run_all_actions()
for res in results:
if args.environment == 'classification':
print("{};{};{};{};{};{};{};{};{};{};{}".format(env.cur_image_idx,
res['action'],
res['parameter'],
res['action_reward'],
res['parameter_reward'],
res['success'],
res['original_score'],
res['modified_score'],
res['original'],
res['prediction'],
res['label']), file=f)
else:
print("{};{};{};{};{};{};{};{}".format(env.cur_image_idx,
res['action'],
res['parameter'],
res['action_reward'],
res['parameter_reward'],
res['success'],
res['original_score'],
res['modified_score']), file=f)
f.flush()
env.reset()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--environment', default="classification",
choices=["classification", "detection"],
help="The SUT under test (classification: ResNet-34 for CIFAR-10, ResNet-50 for ImageNet, detection: Object detection API)")
parser.add_argument('--scenario', default='basic', choices=['basic', 'rotation', 'hierarchical', 'shear'],
help='Test basic MRs or identify rotation robustness.')
parser.add_argument('--dataset', default='cifar10', choices=['cifar10', 'imagenet'],
help="Data set for image classification task (detection is always coco).")
parser.add_argument('--agent', default="bandit", choices=["bandit", "random", "baseline"],
help="The MT selection agent (bandit: Contextual bandit, random: Selects random actions, baseline: Calculates the effect of every action on every state - VERY time expensive)")
parser.add_argument('--features', default='net', choices=['net', 'hash'],
help="Feature extraction method (net: features from pretrained image classification model, hash: imagehash (pHash))")
parser.add_argument('--iterations', default=1000, type=int,
help="How many iterations to run the testing")
parser.add_argument('--save_dir', default=False, action='store_true',
help="Path to store agent model")
parser.add_argument('--load_from', default=None,
help="Path to stored agent model (must fit --agent choice).")
parser.add_argument('--log_dir', default='logs/', help="Directory to store log files")
parser.add_argument('--predict', default=False,
help="Prediction mode, do not train the agent from feedback")
parser.add_argument('--log_interval', type=int, default=10,
help="Number of iterations after which information is logged and printed")
parser.add_argument('--baseline_continue', action='store_true', default=False)
parser.add_argument('--seed', type=int, default=None, help="Random seed for number generators")
args = parser.parse_args()
if args.environment == 'detection':
args.dataset = 'coco'
main(args)