-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcifar10_utils.py
51 lines (41 loc) · 1.55 KB
/
cifar10_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import os
import tarfile
import urllib.request
import pickle
import numpy as np
from skimage.color import rgb2gray
def download_and_extract_cifar10(data_dir):
url = "https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz"
filename = os.path.basename(url)
filepath = os.path.join(data_dir, filename)
if not os.path.exists(data_dir):
os.makedirs(data_dir)
if not os.path.exists(filepath):
print(f"Downloading CIFAR-10 dataset from {url}...")
urllib.request.urlretrieve(url, filepath)
print("Download complete.")
with tarfile.open(filepath, 'r:gz') as tar:
tar.extractall(path=data_dir)
print("Extraction complete.")
# load only the first batch of CIFAR-10 dataset
def load_first_cifar10_batch(data_dir):
cifar10_dir = os.path.join(data_dir, 'cifar-10-batches-py')
file = os.path.join(cifar10_dir, 'data_batch_1')
with open(file, 'rb') as fo:
dict = pickle.load(fo, encoding='bytes')
images = dict[b'data']
images = images.reshape(10000, 3, 32, 32).transpose(0, 2, 3, 1)
return images
def convert_to_grayscale(images):
grayscale_images = np.array([rgb2gray(image) for image in images])
return grayscale_images
# load first N images from the first batch of CIFAR-10 dataset
def load_data(data_dir, N=1000):
images = load_first_cifar10_batch(data_dir)
images = convert_to_grayscale(images[:N])
return images
if __name__ == "__main__":
data_dir = './data'
download_and_extract_cifar10(data_dir)
images = load_data(data_dir, N=1000)
print(images.shape)