-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathinfer.py
166 lines (137 loc) · 5.82 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import torch
import cv2
import argparse
import numpy as np
from tqdm import tqdm
from pathlib import Path
from torchvision import transforms as T
from pose.models import get_pose_model
from pose.utils.boxes import letterbox, scale_boxes, non_max_suppression, xyxy2xywh
from pose.utils.decode import get_final_preds, get_simdr_final_preds
from pose.utils.utils import setup_cudnn, get_affine_transform, draw_keypoints
from pose.utils.utils import VideoReader, VideoWriter, WebcamStream, FPS
import sys
sys.path.insert(0, 'yolov5')
from yolov5.models.experimental import attempt_load
class Pose:
def __init__(self,
det_model,
pose_model,
img_size=640,
conf_thres=0.25,
iou_thres=0.45,
) -> None:
self.img_size = img_size
self.conf_thres = conf_thres
self.iou_thres = iou_thres
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.det_model = attempt_load(det_model, map_location=self.device)
self.det_model = self.det_model.to(self.device)
self.model_name = pose_model
self.pose_model = get_pose_model(pose_model)
self.pose_model.load_state_dict(torch.load(pose_model, map_location='cpu'))
self.pose_model = self.pose_model.to(self.device)
self.pose_model.eval()
self.patch_size = (192, 256)
self.pose_transform = T.Compose([
T.ToTensor(),
T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
])
self.coco_skeletons = [
[16,14],[14,12],[17,15],[15,13],[12,13],[6,12],[7,13], [6,7],[6,8],
[7,9],[8,10],[9,11],[2,3],[1,2],[1,3],[2,4],[3,5],[4,6],[5,7]
]
def preprocess(self, image):
img = letterbox(image, new_shape=self.img_size)
img = np.ascontiguousarray(img.transpose((2, 0, 1)))
img = torch.from_numpy(img).to(self.device)
img = img.float() / 255.0
img = img[None]
return img
def box_to_center_scale(self, boxes, pixel_std=200):
boxes = xyxy2xywh(boxes)
r = self.patch_size[0] / self.patch_size[1]
mask = boxes[:, 2] > boxes[:, 3] * r
boxes[mask, 3] = boxes[mask, 2] / r
boxes[~mask, 2] = boxes[~mask, 3] * r
boxes[:, 2:] /= pixel_std
boxes[:, 2:] *= 1.25
return boxes
def predict_poses(self, boxes, img):
image_patches = []
for cx, cy, w, h in boxes:
trans = get_affine_transform(np.array([cx, cy]), np.array([w, h]), self.patch_size)
img_patch = cv2.warpAffine(img, trans, self.patch_size, flags=cv2.INTER_LINEAR)
img_patch = self.pose_transform(img_patch)
image_patches.append(img_patch)
image_patches = torch.stack(image_patches).to(self.device)
return self.pose_model(image_patches)
def postprocess(self, pred, img1, img0):
pred = non_max_suppression(pred, self.conf_thres, self.iou_thres, classes=0)
for det in pred:
if len(det):
boxes = scale_boxes(det[:, :4], img0.shape[:2], img1.shape[-2:]).cpu()
boxes = self.box_to_center_scale(boxes)
outputs = self.predict_poses(boxes, img0)
if 'simdr' in self.model_name:
coords = get_simdr_final_preds(*outputs, boxes, self.patch_size)
else:
coords = get_final_preds(outputs, boxes)
draw_keypoints(img0, coords, self.coco_skeletons)
@torch.no_grad()
def predict(self, image):
img = self.preprocess(image)
pred = self.det_model(img)[0]
self.postprocess(pred, img, image)
return image
def argument_parser():
parser = argparse.ArgumentParser()
parser.add_argument('--source', type=str, default='assests/test.jpg')
parser.add_argument('--det-model', type=str, default='checkpoints/crowdhuman_yolov5m.pt')
parser.add_argument('--pose-model', type=str, default='checkpoints/pretrained/simdr_hrnet_w32_256x192.pth')
parser.add_argument('--img-size', type=int, default=640)
parser.add_argument('--conf-thres', type=float, default=0.4)
parser.add_argument('--iou-thres', type=float, default=0.5)
return parser.parse_args()
if __name__ == '__main__':
setup_cudnn()
args = argument_parser()
pose = Pose(
args.det_model,
args.pose_model,
args.img_size,
args.conf_thres,
args.iou_thres
)
source = Path(args.source)
if source.is_file() and source.suffix in ['.jpg', '.png']:
image = cv2.imread(str(source))
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
output = pose.predict(image)
cv2.imwrite(f"{str(source).rsplit('.', maxsplit=1)[0]}_out.jpg", cv2.cvtColor(output, cv2.COLOR_RGB2BGR))
elif source.is_dir():
files = source.glob("*.jpg")
for file in files:
image = cv2.imread(str(file))
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
output = pose.predict(image)
cv2.imwrite(f"{str(file).rsplit('.', maxsplit=1)[0]}_out.jpg", cv2.cvtColor(output, cv2.COLOR_RGB2BGR))
elif source.is_file() and source.suffix in ['.mp4', '.avi']:
reader = VideoReader(args.source)
writer = VideoWriter(f"{args.source.rsplit('.', maxsplit=1)[0]}_out.mp4", reader.fps)
fps = FPS(len(reader.frames))
for frame in tqdm(reader):
fps.start()
output = pose.predict(frame.numpy())
fps.stop(False)
writer.update(output)
print(f"FPS: {fps.fps}")
writer.write()
else:
webcam = WebcamStream()
fps = FPS()
for frame in webcam:
fps.start()
output = pose.predict(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
fps.stop()
cv2.imshow('frame', cv2.cvtColor(output, cv2.COLOR_RGB2BGR))