-
Notifications
You must be signed in to change notification settings - Fork 118
/
Copy pathtrain_block_nerf.py
138 lines (120 loc) · 6.07 KB
/
train_block_nerf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import os
import torch
from torch.utils.data import DataLoader
from collections import defaultdict
from block_nerf.waymo_dataset import *
from block_nerf.block_nerf_model import *
from block_nerf.block_nerf_lightning import *
from block_nerf.rendering import *
from block_nerf.metrics import *
from pytorch_lightning import LightningModule, Trainer
from pytorch_lightning.plugins import DDPPlugin
from pytorch_lightning.callbacks import ModelCheckpoint, TQDMProgressBar
from pytorch_lightning.loggers import TensorBoardLogger
import argparse
def get_opts():
parser = argparse.ArgumentParser()
parser.add_argument('--root_dir', type=str,
default='data/pytorch_waymo_dataset',
help='root directory of dataset')
parser.add_argument('--block_index', type=int, default='0',
help='index of the blocks')
parser.add_argument('--img_downscale', type=int, default=4,
help='number of xyz embedding frequencies')
parser.add_argument('--near', type=float, default=1e-2,
help='the range to sample along the ray')
parser.add_argument('--far', type=float, default=15,
help='the range to sample along the ray')
parser.add_argument('--N_IPE_xyz', type=int, default=16,
help='number of xyz embedding frequencies')
parser.add_argument('--N_PE_dir_exposure', type=int, default=4,
help='number of direction embedding frequencies'
)
parser.add_argument('--N_samples', type=int, default=128,
help='number of coarse samples')
parser.add_argument('--N_importance', type=int, default=128,
help='number of additional fine samples')
# NeRF-W
parser.add_argument('--N_vocab', type=int, default=1500,
help='''number of vocabulary (number of images)
in the dataset for nn.Embedding'''
)
parser.add_argument('--N_appearance', type=int, default=32,
help='number of embeddings for appearance')
parser.add_argument('--Visi_loss', type=float, default=1e-2,
help='number of embeddings for appearance')
parser.add_argument('--use_disp', type=bool, default=True,
help='use disparity depth sampling')
parser.add_argument('--chunk', type=int, default=1024 * 16,
help='chunk to avoid OOM')
parser.add_argument('--batch_size', type=int, default=1024,
help='batch size')
parser.add_argument('--num_epochs', type=int, default=10,
help='number of training epochs')
parser.add_argument('--num_gpus', type=int, default=1,
help='number of gpus')
parser.add_argument('--ckpt_path', type=str, default=None,
help='pretrained checkpoint path to load')
parser.add_argument('--optimizer', type=str, default='adam',
help='optimizer type', choices=['sgd', 'adam',
'radam', 'ranger'])
parser.add_argument('--lr', type=float, default=5e-4,
help='learning rate')
parser.add_argument('--momentum', type=float, default=0.9,
help='learning rate momentum')
parser.add_argument('--weight_decay', type=float, default=0,
help='weight decay')
parser.add_argument('--lr_scheduler', type=str, default='steplr',
help='scheduler type', choices=['steplr',
'cosine', 'poly'])
parser.add_argument('--warmup_multiplier', type=float, default=1.0,
help='lr is multiplied by this factor after --warmup_epochs'
)
parser.add_argument('--warmup_epochs', type=int, default=0,
help='Gradually warm-up(increasing) learning rate in optimizer'
)
parser.add_argument('--decay_step', nargs='+', type=int,
default=[20], help='scheduler decay step')
parser.add_argument('--decay_gamma', type=float, default=0.1,
help='learning rate decay amount')
parser.add_argument('--poly_exp', type=float, default=0.9,
help='exponent for polynomial learning rate decay'
)
parser.add_argument('--exp_name', type=str, default='exp',
help='experiment name')
parser.add_argument('--refresh_every', type=int, default=1,
help='print the progress bar every X steps')
return vars(parser.parse_args())
def main(hparams):
print("Warning, this old implementation of BlockNeRF will be deprecated in the next version!")
hparams['block_index'] = 'block_' + str(hparams['block_index'])
system = Block_NeRF_System(hparams)
checkpoint_callback = \
ModelCheckpoint(dirpath=os.path.join('data/ckpts/{0}'.format(hparams['exp_name'
]), str(hparams['block_index']) + '_{epoch:d}'
), monitor='val/loss', mode='min', save_top_k=5)
callbacks = [checkpoint_callback]
logger = TensorBoardLogger(save_dir='logs',
name=hparams['block_index'],
default_hp_metric=False)
trainer = Trainer(
max_epochs=hparams['num_epochs'],
precision=16,
callbacks=callbacks,
resume_from_checkpoint=hparams['ckpt_path'],
logger=logger,
enable_model_summary=True,
gpus=hparams['num_gpus'],
accelerator='auto',
num_sanity_val_steps=1,
benchmark=True,
profiler=('simple' if hparams['num_gpus'] == 1 else None),
strategy=(DDPPlugin(find_unused_parameters=False) if hparams['num_gpus'
] > 1 else None),
)
trainer.fit(system)
print('The best model is saved in', checkpoint_callback.best_model_path)
if __name__ == '__main__':
hparams = get_opts()
torch.cuda.empty_cache()
main(hparams)