-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
128 lines (120 loc) · 5.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import torch
from torchvision import transforms as tf
import yaml
from torchvision.datasets import ImageFolder
import wandb
import torchinfo
import argparse
from libs.functions import train, evaluate, checkpoint, get_random_hash
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--wandb',
action='store_true',
default=False,
help='sync with W&B')
parser.add_argument('--resume',
action='store_true',
default=False,
help='resume')
parser.add_argument('--config',
action='store',
default='flowers.yaml',
help='config filename')
args = parser.parse_args()
WANDB, RESUME, path = args.wandb, args.resume, args.config
with open(path) as stream:
CFG = yaml.safe_load(stream)
laststate = torch.load(CFG['checkpoint']) if RESUME else None
initial_epoch = laststate['epoch'] + 1 if RESUME else 0
'''
if RESUME:
RID = os.path.basename(CFG['checkpoint']).rstrip('.dict')[:-3]
if WANDB:
print(f"Your run id is {RID} with checkpoint {CFG['checkpoint']}")
input("Press any key if you want to continue >>")
wprj = wandb.init(id=RID,
project=CFG['wandb']['project'],
resume='must',
config=CFG)
else: # not RESUME
'''
for i in range(1):
print(f'{i}-th run')
if WANDB:
wprj = wandb.init(project=CFG['wandb']['project'],
resume=False,
config=CFG,
name=f"{CFG['wandb']['name']}{i}",
reinit=True)
RID = wprj.id
else:
RID = get_random_hash()
if torch.cuda.is_available():
device = torch.device("cuda:0")
else:
device = torch.device("cpu")
print("Torch is using device:", device)
module = __import__(CFG['model_file'], fromlist=[CFG['model_name']])
model_constructor = getattr(module, CFG['model_name'])
model = model_constructor() # Model(3, 10)
initial_epoch = 0
model.float()
model.to(device)
if RESUME:
model.load_state_dict(laststate['state_dict'])
print("Model state dict loaded from checkpoint")
print(model)
torchinfo.summary(model, tuple(CFG['general']['torchinfo_shape']))
if WANDB:
wandb.watch(model)
stats = CFG['dataset']['stats']
train_tfms = tf.Compose([
tf.RandomCrop(CFG['dataset']['crop'], padding=4, padding_mode='reflect'),
tf.RandomHorizontalFlip(),
tf.ToTensor(),
tf.Normalize(*stats, inplace=True)
])
valid_tfms = tf.Compose([tf.ToTensor(), tf.Normalize(*stats)])
trainset = ImageFolder(CFG['dataset']['train'], train_tfms)
testset = ImageFolder(CFG['dataset']['test'], valid_tfms)
trainloader = torch.utils.data.DataLoader(trainset,
batch_size=CFG['batch_size'],
shuffle=True,
num_workers=2)
testloader = torch.utils.data.DataLoader(testset,
batch_size=CFG['batch_size'],
shuffle=False,
num_workers=2)
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5)
if RESUME and laststate['optimizer'] is not None:
optimizer.load_state_dict(laststate['optimizer'])
print("Optimizer state dict loaded from checkpoint")
for epoch in range(initial_epoch, CFG['epochs']):
print(f'==================== Epoch: {epoch} ====================')
train(model=model,
loader=trainloader,
criterion=criterion,
optimizer=optimizer,
augmentations=CFG['augmentations'],
label_smoothing=CFG['label_smoothing'],
num_classes=CFG['dataset']['num_classes'])
loss_train, acc_train = evaluate(model, trainloader, criterion, CFG['dataset']['num_classes'])
loss_test, acc_test = evaluate(model, testloader, criterion, CFG['dataset']['num_classes'])
print(f' Training loss: {loss_train:.4f}')
print(f' Training acc: {acc_train*100:.2f}%')
print(f' Testing loss: {loss_test:.4f}')
print(f' Testing acc: {acc_test*100:.2f}%')
if WANDB:
wandb.log({
"Training loss": loss_train,
"Training acc": acc_train,
"Testing loss": loss_test,
"Testing acc": acc_test,
})
checkpoint(RID,
data={
'epoch': epoch,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict()
})