-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlimco.py
383 lines (308 loc) · 12.3 KB
/
limco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
import re
import unicodedata as ud
import warnings
from collections import Counter
from typing import Optional, Union
import fire
import ginza
import jaconv
import numpy as np
import pandas as pd
import spacy
from tqdm import tqdm
Num = Union[int, float]
# Regex patterns for remove_extra_spaces()
BLOCKS_JA = "".join(
(
"\u4E00-\u9FFF", # CJK UNIFIED IDEOGRAPHS
"\u3040-\u309F", # HIRAGANA
"\u30A0-\u30FF", # KATAKANA
"\u3000-\u303F", # CJK SYMBOLS AND PUNCTUATION
"\uFF00-\uFFEF", # HALFWIDTH AND FULLWIDTH FORMS
)
)
BLOCK_LT = "\u0000-\u007F"
PTN_SPC_BW_JA = re.compile(f"([{BLOCKS_JA}]) +?([{BLOCKS_JA}])")
PTN_SPC_LEFT_JA = re.compile(f"([{BLOCK_LT}]) +?([{BLOCKS_JA}])")
PTN_SPC_RIGHT_JA = re.compile(f"([{BLOCKS_JA}]) +?([{BLOCK_LT}])")
NLP = spacy.load("ja_ginza")
def remove_extra_spaces(text: str) -> str:
# Taken from https://gist.github.com/hideaki-t/198898f44aab078ed1a1#file-normalize_neologd-py-L17
for ptn in [PTN_SPC_BW_JA, PTN_SPC_LEFT_JA, PTN_SPC_RIGHT_JA]:
text = ptn.sub(r"\1\2", text)
return text
def normalise(text: str, preserve_newlines=False) -> str:
"""Normalise Japanese text.
Args:
text (str): Japanese text to normalise.
preserve_newlines (bool, optional):
Whether to preserve newlines.
Enable if the input is formatted like 'sentence-per-line'
(e.g. when the original sentence do not end with punctuation).
Defaults to False.
"""
if not preserve_newlines:
text = text.replace("\r", "")
text = text.replace("\n", "")
# Zenkaku alphabets, numbers, and signs to Hankaku
# Hankaku Kana to Zenkaku
text = jaconv.normalize(text, "NFKC")
text = remove_extra_spaces(text)
return text
def count_charcat(text: str) -> dict[str, int]:
"""Count number of characters in each Japanese character category."""
c = Counter([ud.name(char).split()[0] for char in text])
return {"hiragana": c["HIRAGANA"], "katakana": c["KATAKANA"], "kanji": c["CJK"]}
def count_conversations(text: str) -> dict[str, int]:
"""Count number of conversations in Japanese text."""
return {
"single": len(re.findall(r"「.+?」", text)),
"double": len(re.findall(r"『.+?』", text)),
}
def describe_sentence_lengths(doc: spacy.tokens.Doc) -> dict[str, Num]:
"""Calculate descriptive stats of sentence lengths (char counts)."""
sentlens = [len(sent.text) for sent in doc.sents]
return {
"sentlen_mean": np.mean(sentlens),
"sentlen_std": np.std(sentlens, ddof=1),
"sentlen_min": np.min(sentlens),
"sentlen_q1": np.quantile(sentlens, 0.25),
"sentlen_med": np.median(sentlens),
"sentlen_q3": np.quantile(sentlens, 0.75),
"sentlen_max": np.max(sentlens),
}
def measure_pos(
doc: spacy.tokens.Doc,
stopwords: list[str],
awd: dict[str, float],
jiwc: Optional[pd.DataFrame],
) -> dict[str, Num]:
res = {}
all_tokens = []
total_tokens = 0
total_verbs = 0
total_nouns = 0
total_adjs = 0
total_advs = 0
total_dets = 0
for sent in doc.sents:
for token in sent:
if token.lemma_ in stopwords:
continue
all_tokens.append(token.lemma_)
total_tokens += 1
if token.pos_ == "VERB":
total_verbs += 1
elif token.pos_ == "NOUN":
total_nouns += 1
elif token.pos_ == "ADJ":
total_adjs += 1
elif token.pos_ == "ADV":
total_advs += 1
elif token.pos_ == "DET":
total_dets += 1
# CONTENT WORDS RATIO
total_content_words = total_verbs + total_nouns + total_adjs
res["cwr"] = np.divide(total_content_words, total_tokens)
# NOTE: skip FUNCTION WORDS RATIO since it's equiv to 1 - CWR
# Modifying words and verb ratio (MVR)
total_modifying_words = total_adjs + total_advs + total_dets
res["mvr"] = np.divide(total_modifying_words, total_verbs)
# Named Entity Ratio
res["pct_ne"] = np.divide(len(list(doc.ents)), total_tokens)
res.update(calc_ttrs(all_tokens))
if awd:
res.update(score_abstractness(all_tokens, awd))
if jiwc is not None:
res.update(score_jiwc(all_tokens, jiwc))
return res
def calc_ttrs(tokens: list[str]) -> dict[str, Num]:
cnt = Counter(tokens)
Vn = len(cnt)
logVn = np.log(Vn)
N = np.sum(list(cnt.values()))
logN = np.log(N)
# TODO: implement frequency-wise TTR variants
return {
"ttr_orig": np.divide(Vn, N), # original plain TTR: not robust to the length
"ttr_guiraud_r": np.divide(Vn, np.sqrt(N)), # Guiraud's R
"ttr_herdan_ch": np.divide(logVn, logN), # Herdan's C_H
"ttr_rubet_k": np.divide(logVn, np.log(logN)), # Rubet's k
"ttr_maas_a2": np.divide((logN - logVn), (logN**2)), # Maas's a^2
"ttr_tuldava_ln": np.divide(
(1 - (Vn**2)), ((Vn**2) * logN)
), # Tuldava's LN
"ttr_brunet_w": np.float_power(N, np.float_power(Vn, 0.172)), # Brunet's W
"ttr_dugast_u": np.divide((logN**2), (logN - logVn)), # Dugast's U
}
def score_abstractness(tokens: list[str], awds: dict[str, float]) -> dict[str, float]:
scores = [awds[token] for token in tokens if token in awds]
if scores:
return {
"abst_top5_mean": np.mean(sorted(scores, reverse=True)[:5]),
"abst_max": max(scores),
}
else:
return {"abst_top5_mean": np.nan, "abst_max": np.nan}
def score_jiwc(tokens: list[str], df_jiwc: pd.DataFrame) -> dict[str, float]:
"""calculate JIWC sentiment scores.
Sentiment scores are normalized by the sum of all scores (i.e. softmax).
"""
jiwc_words = list(set(tokens) & set(df_jiwc.index))
jiwc_vals = df_jiwc.loc[jiwc_words].sum()
return (jiwc_vals / jiwc_vals.sum()).to_dict()
def count_taigendome(doc: spacy.tokens.Doc) -> int:
"""Count Japanese 体言止め (taigen-dome) sentences in a text."""
pos_per_sent = [[token.pos_ for token in sent] for sent in doc.sents]
return sum(is_taigendome(sent) for sent in pos_per_sent)
def is_taigendome(pos_list: list[str]) -> bool:
"""Check if a sentence is 体言止め (taigen-dome)."""
if len(pos_list) < 2:
return False
if pos_list[-1] != "PUNCT":
return pos_list[-1] == "NOUN"
else:
return pos_list[-2] == "NOUN"
# TODO: 荒牧先生の潜在語彙量も
# def calc_potentialvocab(text: str) -> float:
# raise NotImplementedError
def describe_max_sent_depths(doc: spacy.tokens.Doc) -> dict[str, float]:
"""Describe the maximum depths of the sentences."""
max_depths = [count_max_sent_depth(sent) for sent in doc.sents]
return {
"sentdepths_mean": np.mean(max_depths),
"sentdepths_std": np.std(max_depths, ddof=1),
"sentdepths_min": np.min(max_depths),
"sentdepths_q1": np.quantile(max_depths, 0.25),
"sentdepths_med": np.median(max_depths),
"sentdepths_q3": np.quantile(max_depths, 0.75),
"sentdepths_max": np.max(max_depths),
}
def count_max_sent_depth(sent: spacy.tokens.Span) -> int:
"""Count the maximum number of depth of the sentence."""
deps = {token.i: token.head.i for token in sent}
depths = {i: _count_depth(0, i, deps) for i in deps}
return max(depths.values())
def _count_depth(mem: int, tgt: int, deps: dict[int, int]) -> int:
"""A helper to count the maximum number of depth of the sentence."""
if deps[tgt] == tgt:
return mem
else:
return 1 + _count_depth(mem, deps[tgt], deps)
def describe_sent_chunks(doc: spacy.tokens.Doc) -> dict[str, float]:
"""Describe the number of chunks per sentence."""
num_chunks = [len(list(ginza.bunsetu_spans(sent))) for sent in doc.sents]
return {
"sentchunks_mean": np.mean(num_chunks),
"sentchunks_std": np.std(num_chunks, ddof=1),
"sentchunks_min": np.min(num_chunks),
"sentchunks_q1": np.quantile(num_chunks, 0.25),
"sentchunks_med": np.median(num_chunks),
"sentchunks_q3": np.quantile(num_chunks, 0.75),
"sentchunks_max": np.max(num_chunks),
}
def describe_chunk_tokens(doc: spacy.tokens.Doc) -> dict[str, float]:
"""Describe the number of tokens per chunk."""
num_tokens = [len(span) for sent in doc.sents for span in ginza.bunsetu_spans(sent)]
return {
"chunktokens_mean": np.mean(num_tokens),
"chunktokens_std": np.std(num_tokens, ddof=1),
"chunktokens_min": np.min(num_tokens),
"chunktokens_q1": np.quantile(num_tokens, 0.25),
"chunktokens_med": np.median(num_tokens),
"chunktokens_q3": np.quantile(num_tokens, 0.75),
"chunktokens_max": np.max(num_tokens),
}
def calculate_all(
text: str, stopwords: list[str], awd: dict[str, float], jiwc: Optional[pd.DataFrame]
) -> dict[str, Num]:
res = {}
text = normalise(text)
# calculatable without spacy
num_chars = len(text)
num_charcats = count_charcat(text)
res["pct_hiragana"] = np.divide(num_charcats["hiragana"], num_chars)
res["pct_katakana"] = np.divide(num_charcats["katakana"], num_chars)
res["pct_kanji"] = np.divide(num_charcats["kanji"], num_chars)
num_convs = count_conversations(text)
# calculation requiring spacy
doc = NLP(text)
res["num_sents"] = len(list(doc.sents))
res["pct_convs"] = np.divide(sum(num_convs.values()), res["num_sents"])
res["pct_taigen"] = np.divide(count_taigendome(doc), res["num_sents"])
res.update(describe_sentence_lengths(doc))
res.update(measure_pos(doc, stopwords, awd, jiwc))
# 文節 processing
res.update(describe_max_sent_depths(doc))
res.update(describe_sent_chunks(doc))
res.update(describe_chunk_tokens(doc))
return res
def from_df(
df: pd.DataFrame,
col: str,
stopwords: Optional[list[str]] = None,
awds: Optional[dict[str, float]] = None,
df_jiwc: Optional[pd.DataFrame] = None,
) -> pd.DataFrame:
assert col in df.columns, f"{col} is not found in the input data"
tqdm.pandas(total=len(df))
return df.progress_apply(
lambda row: calculate_all(row[col], stopwords, awds, df_jiwc),
result_type="expand",
axis=1,
)
def from_file(
fname: str, col: str, sw: str = None, awd: str = None, jiwc: str = None
) -> None:
"""Linguistic Measure Collection
Calculate all linguistic measures for each text in the given file and write the results to an extended CSV file named `<input_file_path>.limco.csv`.
Args:
fname (str): File path to the input file. CSV and Excel files are supported.
col (str): Column name of the text to be analysed.
sw (str, optional): Path to stopwords, where words should be listed one per line. Defaults to None.
awd (str, optional): Path to Abstruct Word Dictionary published by SocioCom. Defaults to None.
jiwc (str, optional): Path to JIWC published by SocioCom. Defaults to None.
Raises:
ValueError: arise when you specify an unsupported file format.
"""
if fname.endswith(".csv"):
df = pd.read_csv(fname)
elif fname.endswith(".xls") or fname.endswith(".xlsx"):
df = pd.read_excel(fname)
else:
raise ValueError("Unsupported input format: please use CSV or Excel data")
if sw:
with open(sw, "r") as f:
stopwords = [line.strip() for line in f]
else:
stopwords = []
if awd:
with open(awd, "r") as f:
# AWD TSV format: word, score, deviation, pos
rows = [line.strip().split("\t") for line in f]
rows.pop(0) # remove header
awds = {word: float(score) for word, score, _, _ in rows}
else:
awds = {}
if jiwc:
df_jiwc = (
pd.read_csv(jiwc)
.set_index("Words")
.rename(
columns=lambda x: "jiwc_" + x.lower(),
)
)
else:
df_jiwc = None
df_limco = from_df(df, col, stopwords, awds, df_jiwc)
pd.concat(
[df, df_limco],
axis=1,
).to_csv(f"{fname}.limco.csv", index=False)
def main():
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# Surpress warnings mainly from numpy for CLI
fire.Fire(from_file)
if __name__ == "__main__":
main()