forked from jkx19/CoNLL03
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcli.py
416 lines (375 loc) · 16.1 KB
/
cli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
import datasets
from datasets.load import load_metric, load_dataset, load_dataset_builder
import numpy as np
import torch
from torch import Tensor
import torch.nn
import torch.nn.functional as F
from torch.utils.data.dataloader import DataLoader
from torch.utils.data.sampler import RandomSampler
from torch.optim import AdamW
from transformers.trainer_pt_utils import get_parameter_names
from tqdm import tqdm
from dataclasses import dataclass, field
from typing import Optional
import sys
import os
import argparse
from data.conll_dataset import CoNLL
from model.prefix import BertForTokenClassification, BertPrefixModel
from model.prefix import DeBertaPrefixModel
from model.prefix import DeBertaV2PrefixModel
from model.deberta import DebertaForTokenClassification
from trainer import Trainer
ADD_PREFIX_SPACE = {
'bert': False,
'deberta': True,
'gpt2': True,
'debertaV2': True,
}
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
default='bert-base-uncased',
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
"with private models)."
},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
task_name: Optional[str] = field(default="ner", metadata={"help": "The name of the task (ner, pos...)."})
dataset_name: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
train_file: Optional[str] = field(
default=None, metadata={"help": "The input training data file (a csv or JSON file)."}
)
validation_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input evaluation data file to evaluate on (a csv or JSON file)."},
)
test_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input test data file to predict on (a csv or JSON file)."},
)
text_column_name: Optional[str] = field(
default=None, metadata={"help": "The column name of text to input in the file (a csv or JSON file)."}
)
label_column_name: Optional[str] = field(
default=None, metadata={"help": "The column name of label to input in the file (a csv or JSON file)."}
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
pad_to_max_length: bool = field(
default=False,
metadata={
"help": "Whether to pad all samples to model maximum sentence length. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
"efficient on GPU but very bad for TPU."
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
},
)
max_predict_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
},
)
label_all_tokens: bool = field(
default=False,
metadata={
"help": "Whether to put the label for one word on all tokens of generated by that word or just on the "
"one (in which case the other tokens will have a padding index)."
},
)
return_entity_level_metrics: bool = field(
default=False,
metadata={"help": "Whether to return all the entity levels during evaluation or just the overall ones."},
)
# METRIC: F1 score
# Note: the main reason abandoning LAMA is to fit the metric
class Trainer_API:
def __init__(self, args) -> None:
# parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
# self.model_args, self.data_args, self.training_args = parser.parse_args_into_dataclasses()
self.task = args.task
assert self.task in ['pos', 'chunk', 'ner']
self.device = torch.device('cuda:0')
device_num = torch.cuda.device_count() if torch.cuda.is_available() else 1
self.batch_size = args.batch_size * device_num
self.epoch = args.epoch
self.adam_beta1 = 0.9
self.adam_beta2 = 0.999
self.adam_epsilon = 1e-8
self.weight_decay = 0
self.gamma = 0.95
self.lr = args.lr
if args.model == 'bert':
self.model_name = f'bert-{args.model_size}-uncased'
elif args.model == 'deberta':
if args.model_size == 'base':
self.model_name = 'microsoft/deberta-xlarge'
elif args.model_size == 'large':
raise NotImplementedError
elif args.model == 'debertaV2':
if args.model_size == 'base':
self.model_name = 'microsoft/deberta-xlarge-v2'
elif args.model_size == 'large':
self.model_name = 'microsoft/deberta-xxlarge-v2'
elif args.model == 'gpt2':
if args.model_size == 'base':
self.model_name = 'gpt2-medium'
elif args.model_size == 'large':
self.model_name = 'gpt2-large'
raw_data = load_dataset('data/load_dataset.py')
add_prefix_space = ADD_PREFIX_SPACE[args.model]
dataset = CoNLL(self.task, raw_data, self.model_name, aps=add_prefix_space)
self.train_dataset = dataset.train_data
self.dev_dataset = dataset.dev_data
self.test_dataset = dataset.test_data
self.ignore_columns = dataset.ignore_columns
self.tokenizer = dataset.tokenizer
self.data_collator = dataset.data_collator
self.compute_metrics = dataset.compute_metrics
self.lm_config = dataset.config
self.method = args.method
if args.method == 'prefix':
self.lm_config.hidden_dropout_prob = args.dropout
self.lm_config.pre_seq_len = args.pre_seq_len
self.lm_config.mid_dim = args.mid_dim
if args.model == 'deberta':
self.model = DeBertaPrefixModel.from_pretrained(
self.model_name,
config=self.lm_config,
revision='main',
)
elif args.model == 'debertaV2':
self.model = DeBertaV2PrefixModel.from_pretrained(
self.model_name,
config=self.lm_config,
revision='main',
)
elif args.model == 'bert':
self.model = BertPrefixModel.from_pretrained(
self.model_name,
config=self.lm_config,
revision='main',
)
elif args.model == 'gpt2':
raise NotImplementedError
elif args.method == 'finetune':
if 'deberta' in self.model_name:
self.model = DebertaForTokenClassification.from_pretrained(
self.model_name,
config=self.lm_config,
revision='main',
)
elif 'bert' in self.model_name:
self.model = BertForTokenClassification.from_pretrained(
self.model_name,
config=self.lm_config,
revision='main',
)
self.train_loader = self.get_data_loader(self.train_dataset)
self.dev_loader = self.get_data_loader(self.dev_dataset)
self.test_loader = self.get_data_loader(self.test_dataset)
max_dev_len = max([batch['labels'].shape[1] for _, batch in enumerate(self.dev_loader)])
max_test_len = max([batch['labels'].shape[1] for _, batch in enumerate(self.test_loader)])
self.max_seq_len = max(max_dev_len, max_test_len)
def get_sampler(self, dataset) -> Optional[torch.utils.data.sampler.Sampler]:
generator = torch.Generator()
generator.manual_seed(int(torch.empty((), dtype=torch.int64).random_().item()))
# Build the sampler.
return RandomSampler(dataset, generator=generator)
def get_data_loader(self, dataset: datasets.arrow_dataset.Dataset) -> DataLoader:
dataset = dataset.remove_columns(self.ignore_columns)
sampler = self.get_sampler(dataset)
return DataLoader(
dataset,
batch_size=self.batch_size,
sampler=sampler,
collate_fn=self.data_collator,
drop_last=False,
num_workers=0,
pin_memory=True,
)
def get_optimizer(self):
decay_parameters = get_parameter_names(self.model, [torch.nn.LayerNorm])
decay_parameters = [name for name in decay_parameters if "bias" not in name]
optimizer_grouped_parameters = [
{
"params": [p for n, p in self.model.classifier.named_parameters() if n in decay_parameters],
"weight_decay": self.weight_decay,
},
{
"params": [p for n, p in self.model.classifier.named_parameters() if n not in decay_parameters],
"weight_decay": 0.0,
},
{
"params": [p for n, p in self.model.prefix_encoder.named_parameters() if n not in decay_parameters],
"weight_decay": self.weight_decay,
},
]
optimizer_kwargs = {
"betas": (self.adam_beta1, self.adam_beta2),
"eps": self.adam_epsilon,
}
optimizer_kwargs["lr"] = self.lr
self.optimizer = AdamW(optimizer_grouped_parameters, **optimizer_kwargs)
def get_schedular(self):
pass
def pad_tensor(self, tensor: torch.Tensor, pad_index: int):
r'''
Pad the ( batched ) result tensor to max length for concatent with given pad-index
'''
max_size = self.max_seq_len
old_size = tensor.shape
new_size = list(old_size)
new_size[1] = max_size
new_tensor = tensor.new_zeros(tuple(new_size)) + pad_index
new_tensor[:, : old_size[1]] = tensor
return new_tensor
def train(self):
self.get_optimizer()
self.scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer=self.optimizer, gamma=self.gamma)
pbar = tqdm(total=len(self.train_loader)*self.epoch)
if torch.cuda.device_count() > 1:
self.model = torch.nn.DataParallel(self.model)
self.model.to(self.device)
best_dev_result = 0
best_test_result = 0
for epoch in range(self.epoch):
# Train
total_loss = 0
self.model.train()
for batch_idx, batch in enumerate(self.train_loader):
batch = {k:v.to(self.device) for k,v in batch.items()}
output = self.model(**batch)
loss = torch.sum(output.loss)
# loss = output.loss
total_loss += loss.item()
loss.backward()
self.optimizer.step()
self.optimizer.zero_grad()
pbar.update(1)
self.scheduler.step()
# Evaluate
dev_result = self.eval()
test_result = self.test()
if best_dev_result < dev_result["f1"]:
best_dev_result = dev_result["f1"]
best_test_result = test_result
best_head = self.model.classifier.state_dict()
pbar.set_description(f'Train_loss: {total_loss:.1f}, Eval_F1: {dev_result["f1"]:.3f}, Test_F1: {test_result["f1"]:.3f},')
pbar.close()
return {'dev': best_dev_result['f1'], 'test': best_test_result['f1']}
def eval(self):
self.model.eval()
with torch.no_grad():
labels, prediction = [], []
for batch_idx, batch in enumerate(self.dev_loader):
batch = {k:v.to(self.device) for k,v in batch.items()}
output = self.model(**batch)
loss,logits = output.loss, output.logits
logits = self.pad_tensor(logits, -100)
prediction.append(logits)
batch_label = self.pad_tensor(batch['labels'], -100)
labels.append(batch_label)
prediction = torch.cat(prediction)
labels = torch.cat(labels)
result = self.compute_metrics((np.array(prediction.cpu()), np.array(labels.cpu())))
return result
def test(self):
self.model.eval()
with torch.no_grad():
labels, prediction = [], []
for batch_idx, batch in enumerate(self.test_loader):
batch = {k:v.to(self.device) for k,v in batch.items()}
output = self.model(**batch)
loss,logits = output.loss, output.logits
logits = self.pad_tensor(logits, -100)
prediction.append(logits)
batch_label = self.pad_tensor(batch['labels'], -100)
labels.append(batch_label)
prediction = torch.cat(prediction)
labels = torch.cat(labels)
result = self.compute_metrics((np.array(prediction.cpu()), np.array(labels.cpu())))
return result
def set_seed(args):
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
def construct_args():
parser = argparse.ArgumentParser()
parser.add_argument("--lr", type=float, default=2e-2)
parser.add_argument('--batch_size', type=int, default=16)
parser.add_argument('--task', type=str, choices=['pos', 'chunk', 'ner'], default='ner')
parser.add_argument('--pre_seq_len', type=int, default=4)
parser.add_argument('--mid_dim', type=int, default=512)
parser.add_argument('--model', type=str,choices=['bert', 'deberta', 'debertaV2'], default='deberta')
parser.add_argument('--model_size', type=str, choices=['base', 'large'], default='base')
parser.add_argument('--method', type=str, choices=['prefix', 'finetune'], default='prefix')
parser.add_argument('--epoch', type=int, default=30)
parser.add_argument('--dropout', type=float, default=0.1)
parser.add_argument('--seed', type=int, default=11)
parser.add_argument('--cuda', type=str, default='7')
args = parser.parse_args()
set_seed(args)
return args
def main():
args = construct_args()
os.environ["CUDA_VISIBLE_DEVICES"] = '7'
train_api = Trainer_API(args)
result = train_api.train()
sys.stdout = open('result.txt', 'a')
print(args)
print(result)
if __name__ == '__main__':
main()