-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathtrain_base_net_x4.m
47 lines (40 loc) · 1.38 KB
/
train_base_net_x4.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
function train_base_net_x4(varargin)
% load data & label
data = load('./data/train/SDR_youtube_80_x4.mat') ;
label = load('./data/train/HDR_youtube_80.mat') ;
imdb.images.data = data.SDR_data;
imdb.images.label = label.HDR_data;
imdb.images.set = cat(2, ones(1, size(data.SDR_data, 4)-500), 2*ones(1, 500));
% set CNN model
net = net_base_x4();
% set the learning rate and weight decay for biases
% default values are used for filters
for i = 2:2:114
net.params(i).learningRate = 0.1;
net.params(i).weightDecay = 0;
end
net.conserveMemory = true;
% options
opts.solver = @adam;
opts.train.batchSize = 16;
opts.train.continue = true;
opts.train.gpus = 1;
opts.train.prefetch = false ;
opts.train.expDir = './net/net_base_x4' ;
opts.train.learningRate = 5*1e-7*ones(1, 200);
opts.train.weightDecay = 0.0005;
opts.train.numEpochs = numel(opts.train.learningRate) ;
opts.train.derOutputs = {'objective', 1} ;
[opts, ~] = vl_argparse(opts.train, varargin) ;
% record
if(~isdir(opts.expDir))
mkdir(opts.expDir);
end
% call training function
[net, info] = cnn_train_dag(net, imdb, @getBatch, opts) ;
function inputs = getBatch(imdb, batch, opts)
image = imdb.images.data(:, :, :, batch) ;
label = imdb.images.label(:, :, :, batch) ;
image = single(image)/255;
label = single(label)/1023;
inputs = {'input', gpuArray(image), 'label', gpuArray(label)};