-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtable.ino
407 lines (364 loc) · 14.6 KB
/
table.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
/*
Speeduino - Simple engine management for the Arduino Mega 2560 platform
Copyright (C) Josh Stewart
A full copy of the license may be found in the projects root directory
*/
/*
Because the size of the table is dynamic, this functino is required to reallocate the array sizes
Note that this may clear some of the existing values of the table
*/
#include "table.h"
#include "globals.h"
void table2D_setSize(struct table2D* targetTable, byte newSize)
{
//2D tables can contain either bytes or ints, depending on the value of the valueSize field
if(targetTable->valueSize == SIZE_BYTE)
{
targetTable->values = (byte *)realloc(targetTable->values, newSize * sizeof(byte));
targetTable->axisX = (byte *)realloc(targetTable->axisX, newSize * sizeof(byte));
targetTable->xSize = newSize;
}
else
{
targetTable->values16 = (int *)realloc(targetTable->values16, newSize * sizeof(int));
targetTable->axisX16 = (int *)realloc(targetTable->axisX16, newSize * sizeof(int));
targetTable->xSize = newSize;
}
}
void table3D_setSize(struct table3D *targetTable, byte newSize)
{
targetTable->values = (byte **)malloc(newSize * sizeof(byte*));
for(byte i = 0; i < newSize; i++) { targetTable->values[i] = (byte *)malloc(newSize * sizeof(byte)); }
targetTable->axisX = (int *)malloc(newSize * sizeof(int));
targetTable->axisY = (int *)malloc(newSize * sizeof(int));
targetTable->xSize = newSize;
targetTable->ySize = newSize;
}
/*
This function simply pulls a 1D linear interpolated (ie averaged) value from a 2D table
ie: Given a value on the X axis, it returns a Y value that coresponds to the point on the curve between the nearest two defined X values
This function must take into account whether a table contains 8-bit or 16-bit values.
Unfortunately this means many of the lines are duplicated depending on this
*/
int table2D_getValue(struct table2D *fromTable, int X)
{
int xMinValue, xMaxValue;
if (fromTable->valueSize == SIZE_BYTE)
{
//Byte version
xMinValue = fromTable->axisX[0];
xMaxValue = fromTable->axisX[fromTable->xSize-1];
}
else
{
//int version
xMinValue = fromTable->axisX16[0];
xMaxValue = fromTable->axisX16[fromTable->xSize-1];
}
int xMin = 0;
int xMax = 0;
//If the requested X value is greater/small than the maximum/minimum bin, reset X to be that value
if(X > xMaxValue) { X = xMaxValue; }
if(X < xMinValue) { X = xMinValue; }
if (fromTable->valueSize == SIZE_BYTE)
{
//Byte version
//1st check is whether we're still in the same X bin as last time
if ( (X <= fromTable->axisX[fromTable->lastXMax]) && (X > fromTable->axisX[fromTable->lastXMin]) )
{
xMaxValue = fromTable->axisX[fromTable->lastXMax];
xMinValue = fromTable->axisX[fromTable->lastXMin];
xMax = fromTable->lastXMax;
xMin = fromTable->lastXMin;
}
else
{
//
for (int x = fromTable->xSize-1; x >= 0; x--)
{
//Checks the case where the X value is exactly what was requested
if ( (X == fromTable->axisX[x]) || (x == 0) )
{
return fromTable->values[x]; //Simply return the coresponding value
}
//Normal case
if ( (X <= fromTable->axisX[x]) && (X > fromTable->axisX[x-1]) )
{
xMaxValue = fromTable->axisX[x];
xMinValue = fromTable->axisX[x-1];
fromTable->lastXMax = xMax = x;
fromTable->lastXMin = xMin = x-1;
break;
}
}
}
}
else
{
//1st check is whether we're still in the same X bin as last time
if ( (X <= fromTable->axisX16[fromTable->lastXMax]) && (X > fromTable->axisX16[fromTable->lastXMin]) )
{
xMaxValue = fromTable->axisX16[fromTable->lastXMax];
xMinValue = fromTable->axisX16[fromTable->lastXMin];
xMax = fromTable->lastXMax;
xMin = fromTable->lastXMin;
}
else
{
//
for (int x = fromTable->xSize-1; x >= 0; x--)
{
//Checks the case where the X value is exactly what was requested
if ( (X == fromTable->axisX16[x]) || (x == 0) )
{
return fromTable->values16[x]; //Simply return the coresponding value
}
//Normal case
if ( (X <= fromTable->axisX16[x]) && (X > fromTable->axisX16[x-1]) )
{
xMaxValue = fromTable->axisX16[x];
xMinValue = fromTable->axisX16[x-1];
fromTable->lastXMax = xMax = x;
fromTable->lastXMin = xMin = x-1;
break;
}
}
}
}
/*
for (int x = fromTable->xSize-1; x >= 0; x--)
{
if (fromTable->valueSize == SIZE_BYTE)
{
//Byte version
//Checks the case where the X value is exactly what was requested
if ( (X == fromTable->axisX[x]) || (x == 0) )
{
return fromTable->values[x]; //Simply return the coresponding value
}
//Normal case
if ( (X <= fromTable->axisX[x]) && (X > fromTable->axisX[x-1]) )
{
xMaxValue = fromTable->axisX[x];
xMinValue = fromTable->axisX[x-1];
xMax = x;
xMin = x-1;
break;
}
}
else
{
//int version
if ( (X == fromTable->axisX16[x]) || (x == 0) )
{
return fromTable->values16[x]; //Simply return the coresponding value
}
//Normal case
if ( (X <= fromTable->axisX16[x]) && (X > fromTable->axisX16[x-1]) )
{
xMaxValue = fromTable->axisX16[x];
xMinValue = fromTable->axisX16[x-1];
xMax = x;
xMin = x-1;
break;
}
}
}
*/
unsigned int m = X - xMinValue;
unsigned int n = xMaxValue - xMinValue;
//Float version
/*
int yVal = (m / n) * (abs(fromTable.values[xMax] - fromTable.values[xMin]));
*/
//Non-Float version
int yVal;
if (fromTable->valueSize == SIZE_BYTE)
{
//Byte version
yVal = ((long)(m << 6) / n) * (abs(fromTable->values[xMax] - fromTable->values[xMin]));
yVal = (yVal >> 6);
if (fromTable->values[xMax] > fromTable->values[xMin]) { yVal = fromTable->values[xMin] + yVal; }
else { yVal = fromTable->values[xMin] - yVal; }
}
else
{
//int version
yVal = ((long)(m << 6) / n) * (abs(fromTable->values16[xMax] - fromTable->values16[xMin]));
yVal = (yVal >> 6);
if (fromTable->values[xMax] > fromTable->values16[xMin]) { yVal = fromTable->values16[xMin] + yVal; }
else { yVal = fromTable->values16[xMin] - yVal; }
}
return yVal;
}
//This function pulls a value from a 3D table given a target for X and Y coordinates.
//It performs a 2D linear interpolation as descibred in: http://www.megamanual.com/v22manual/ve_tuner.pdf
int get3DTableValue(struct table3D *fromTable, int Y, int X)
{
//Loop through the X axis bins for the min/max pair
//Note: For the X axis specifically, rather than looping from tableAxisX[0] up to tableAxisX[max], we start at tableAxisX[Max] and go down.
// This is because the important tables (fuel and injection) will have the highest RPM at the top of the X axis, so starting there will mean the best case occurs when the RPM is highest (And hence the CPU is needed most)
int xMinValue = fromTable->axisX[0];
int xMaxValue = fromTable->axisX[fromTable->xSize-1];
byte xMin = 0;
byte xMax = 0;
//If the requested X value is greater/small than the maximum/minimum bin, reset X to be that value
if(X > xMaxValue) { X = xMaxValue; }
if(X < xMinValue) { X = xMinValue; }
//1st check is whether we're still in the same X bin as last time
if ( (X <= fromTable->axisX[fromTable->lastXMax]) && (X > fromTable->axisX[fromTable->lastXMin]) )
{
xMaxValue = fromTable->axisX[fromTable->lastXMax];
xMinValue = fromTable->axisX[fromTable->lastXMin];
xMax = fromTable->lastXMax;
xMin = fromTable->lastXMin;
}
//2nd check is whether we're in the next RPM bin (To the right)
else if ( ((fromTable->lastXMax + 1) < fromTable->xSize ) && (X <= fromTable->axisX[fromTable->lastXMax +1 ]) && (X > fromTable->axisX[fromTable->lastXMin + 1]) ) //First make sure we're not already at the last X bin
{
fromTable->lastXMax = xMax = fromTable->lastXMax + 1;
fromTable->lastXMin = xMin = fromTable->lastXMin + 1;
xMaxValue = fromTable->axisX[fromTable->lastXMax];
xMinValue = fromTable->axisX[fromTable->lastXMin];
}
//3rd check is to look at the previous bin (to the left)
else if ( (fromTable->lastXMin > 0 ) && (X <= fromTable->axisX[fromTable->lastXMax - 1]) && (X > fromTable->axisX[fromTable->lastXMin - 1]) ) //First make sure we're not already at the first X bin
{
fromTable->lastXMax = xMax = fromTable->lastXMax - 1;
fromTable->lastXMin = xMin = fromTable->lastXMin - 1;
xMaxValue = fromTable->axisX[fromTable->lastXMax];
xMinValue = fromTable->axisX[fromTable->lastXMin];
}
else
//If it's not caught by one of the above scenarios, give up and just run the loop
{
for (byte x = fromTable->xSize-1; x >= 0; x--)
{
//Checks the case where the X value is exactly what was requested
if ( (X == fromTable->axisX[x]) || (x == 0) )
{
xMaxValue = fromTable->axisX[x];
xMinValue = fromTable->axisX[x];
fromTable->lastXMax = xMax = x;
fromTable->lastXMin = xMin = x;
break;
}
//Normal case
if ( (X <= fromTable->axisX[x]) && (X > fromTable->axisX[x-1]) )
{
xMaxValue = fromTable->axisX[x];
xMinValue = fromTable->axisX[x-1];
fromTable->lastXMax = xMax = x;
fromTable->lastXMin = xMin = x-1;
break;
}
}
}
//Loop through the Y axis bins for the min/max pair
int yMaxValue = fromTable->axisY[0];
int yMinValue = fromTable->axisY[fromTable->ySize-1];
byte yMin = 0;
byte yMax = 0;
//If the requested Y value is greater/small than the maximum/minimum bin, reset Y to be that value
if(Y > yMaxValue) { Y = yMaxValue; }
if(Y < yMinValue) { Y = yMinValue; }
//1st check is whether we're still in the same Y bin as last time
if ( (Y >= fromTable->axisY[fromTable->lastYMax]) && (Y < fromTable->axisY[fromTable->lastYMin]) )
{
yMaxValue = fromTable->axisY[fromTable->lastYMax];
yMinValue = fromTable->axisY[fromTable->lastYMin];
yMax = fromTable->lastYMax;
yMin = fromTable->lastYMin;
}
//2nd check is whether we're in the next MAP/TPS bin (Next one up)
else if ( (fromTable->lastYMin > 0 ) && (Y <= fromTable->axisY[fromTable->lastYMin - 1 ]) && (Y > fromTable->axisY[fromTable->lastYMax - 1]) ) //First make sure we're not already at the top Y bin
{
fromTable->lastYMax = yMax = fromTable->lastYMax - 1;
fromTable->lastYMin = yMin = fromTable->lastYMin - 1;
yMaxValue = fromTable->axisY[fromTable->lastYMax];
yMinValue = fromTable->axisY[fromTable->lastYMin];
}
//3rd check is to look at the previous bin (Next one down)
else if ( ((fromTable->lastYMax + 1) < fromTable->ySize) && (Y <= fromTable->axisY[fromTable->lastYMin + 1]) && (Y > fromTable->axisY[fromTable->lastYMax + 1]) ) //First make sure we're not already at the bottom Y bin
{
fromTable->lastYMax = yMax = fromTable->lastYMax + 1;
fromTable->lastYMin = yMin = fromTable->lastYMin + 1;
yMaxValue = fromTable->axisY[fromTable->lastYMax];
yMinValue = fromTable->axisY[fromTable->lastYMin];
}
else
//If it's not caught by one of the above scenarios, give up and just run the loop
{
for (byte y = fromTable->ySize-1; y >= 0; y--)
{
//Checks the case where the Y value is exactly what was requested
if ( (Y == fromTable->axisY[y]) || (y==0) )
{
yMaxValue = fromTable->axisY[y];
yMinValue = fromTable->axisY[y];
fromTable->lastYMax = yMax = y;
fromTable->lastYMin = yMin = y;
break;
}
//Normal case
if ( (Y >= fromTable->axisY[y]) && (Y < fromTable->axisY[y-1]) )
{
yMaxValue = fromTable->axisY[y];
yMinValue = fromTable->axisY[y-1];
fromTable->lastYMax = yMax = y;
fromTable->lastYMin = yMin = y-1;
break;
}
}
}
/*
At this point we have the 4 corners of the map where the interpolated value will fall in
Eg: (yMin,xMin) (yMin,xMax)
(yMax,xMin) (yMax,xMax)
In the following calculation the table values are referred to by the following variables:
A B
C D
*/
int A = fromTable->values[yMin][xMin];
int B = fromTable->values[yMin][xMax];
int C = fromTable->values[yMax][xMin];
int D = fromTable->values[yMax][xMax];
//Create some normalised position values
//These are essentially percentages (between 0 and 1) of where the desired value falls between the nearest bins on each axis
// Float version
/*
float p, q;
if (xMaxValue == xMinValue)
{ p = (float)(X-xMinValue); }
else { p = ((float)(X - xMinValue)) / (float)(xMaxValue - xMinValue); }
if (yMaxValue == yMinValue)
{ q = (float)(Y - yMinValue); }
else { q = 1- (((float)(Y - yMaxValue)) / (float)(yMinValue - yMaxValue)); }
float m = (1.0-p) * (1.0-q);
float n = p * (1-q);
float o = (1-p) * q;
float r = p * q;
return ( (A * m) + (B * n) + (C * o) + (D * r) );
*/
// Non-Float version:
//Initial check incase the values were hit straight on
long p;
if (xMaxValue == xMinValue)
{ p = ((long)(X - xMinValue) << 8); } //This only occurs if the requested X value was equal to one of the X axis bins
else
{
p = ((long)(X - xMinValue) << 8) / (xMaxValue - xMinValue); //This is the standard case
}
long q;
if (yMaxValue == yMinValue)
{ q = ((long)(Y - yMinValue) << 8); }
else
{
q = 256 - (((long)(Y - yMaxValue) << 8) / (yMinValue - yMaxValue));
}
int m = ((256-p) * (256-q)) >> 8;
int n = (p * (256-q)) >> 8;
int o = ((256-p) * q) >> 8;
int r = (p * q) >> 8;
return ( (A * m) + (B * n) + (C * o) + (D * r) ) >> 8;
}