forked from speeduino/speeduino
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtimers.ino
136 lines (122 loc) · 7.09 KB
/
timers.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
/*
Speeduino - Simple engine management for the Arduino Mega 2560 platform
Copyright (C) Josh Stewart
A full copy of the license may be found in the projects root directory
*/
/*
Timers are used for having actions performed repeatedly at a fixed interval (Eg every 100ms)
They should not be confused with Schedulers, which are for performing an action once at a given point of time in the future
Timers are typically low resolution (Compared to Schedulers), with maximum frequency currently being approximately every 10ms
*/
#include "timers.h"
#include "globals.h"
#include "sensors.h"
void initialiseTimers()
{
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) //AVR chips use the ISR for this
//Configure Timer2 for our low-freq interrupt code.
TCCR2B = 0x00; //Disbale Timer2 while we set it up
TCNT2 = 131; //Preload timer2 with 131 cycles, leaving 125 till overflow. As the timer runs at 125Khz, this causes overflow to occur at 1Khz = 1ms
TIFR2 = 0x00; //Timer2 INT Flag Reg: Clear Timer Overflow Flag
TIMSK2 = 0x01; //Timer2 Set Overflow Interrupt enabled.
TCCR2A = 0x00; //Timer2 Control Reg A: Wave Gen Mode normal
/* Now configure the prescaler to CPU clock divided by 128 = 125Khz */
TCCR2B |= (1<<CS22) | (1<<CS20); // Set bits
TCCR2B &= ~(1<<CS21); // Clear bit
#endif
}
//Timer2 Overflow Interrupt Vector, called when the timer overflows.
//Executes every ~1ms.
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) //AVR chips use the ISR for this
ISR(TIMER2_OVF_vect, ISR_NOBLOCK)
#elif defined (CORE_TEENSY) && defined (__MK20DX256__)
void timer2Overflowinterrupt() //Most ARM chips can simply call a function
#endif
{
//Increment Loop Counters
loop250ms++;
loopSec++;
//Overdwell check
targetOverdwellTime = micros() - (1000 * configPage2.dwellLimit); //Set a target time in the past that all coil charging must have begun after. If the coil charge began before this time, it's been running too long
targetTachoPulseTime = micros() - (1500);
//Check first whether each spark output is currently on. Only check it's dwell time if it is
if(ignitionSchedule1.Status == RUNNING) { if(ignitionSchedule1.startTime < targetOverdwellTime && configPage2.useDwellLim) { endCoil1Charge(); } if(ignitionSchedule1.startTime < targetTachoPulseTime) { digitalWrite(pinTachOut, HIGH); } }
if(ignitionSchedule2.Status == RUNNING) { if(ignitionSchedule2.startTime < targetOverdwellTime && configPage2.useDwellLim) { endCoil2Charge(); } if(ignitionSchedule2.startTime < targetTachoPulseTime) { digitalWrite(pinTachOut, HIGH); } }
if(ignitionSchedule3.Status == RUNNING) { if(ignitionSchedule3.startTime < targetOverdwellTime && configPage2.useDwellLim) { endCoil3Charge(); } if(ignitionSchedule3.startTime < targetTachoPulseTime) { digitalWrite(pinTachOut, HIGH); } }
if(ignitionSchedule4.Status == RUNNING) { if(ignitionSchedule4.startTime < targetOverdwellTime && configPage2.useDwellLim) { endCoil4Charge(); } if(ignitionSchedule4.startTime < targetTachoPulseTime) { digitalWrite(pinTachOut, HIGH); } }
//Loop executed every 250ms loop (1ms x 250 = 250ms)
//Anything inside this if statement will run every 250ms.
if (loop250ms == 250)
{
loop250ms = 0; //Reset Counter.
}
//Loop executed every 1 second (1ms x 1000 = 1000ms)
if (loopSec == 1000)
{
loopSec = 0; //Reset counter.
//**************************************************************************************************************************************************
//This updates the runSecs variable
//If the engine is running or cranking, we need ot update the run time counter.
if (BIT_CHECK(currentStatus.engine, BIT_ENGINE_RUN))
{ //NOTE - There is a potential for a ~1sec gap between engine crank starting and ths runSec number being incremented. This may delay ASE!
if (currentStatus.runSecs <= 254) //Ensure we cap out at 255 and don't overflow. (which would reset ASE)
{ currentStatus.runSecs++; } //Increment our run counter by 1 second.
}
//**************************************************************************************************************************************************
//This records the number of main loops the system has completed in the last second
currentStatus.loopsPerSecond = mainLoopCount;
mainLoopCount = 0;
//**************************************************************************************************************************************************
//increament secl (secl is simply a counter that increments every second and is used to track whether the system has unexpectedly reset
currentStatus.secl++;
//**************************************************************************************************************************************************
//Check the fan output status
if (configPage4.fanEnable == 1)
{
fanControl(); // Fucntion to turn the cooling fan on/off
}
//Check whether fuel pump priming is complete
if(!fpPrimed)
{
if(currentStatus.secl >= configPage1.fpPrime)
{
fpPrimed = true; //Mark the priming as being completed
if(currentStatus.RPM == 0) { digitalWrite(pinFuelPump, LOW); fuelPumpOn = false; } //If we reach here then the priming is complete, however only turn off the fuel pump if the engine isn't running
}
}
//**************************************************************************************************************************************************
//Set the flex reading (if enabled). The flexCounter is updated with every pulse from the sensor. If cleared once per second, we get a frequency reading
if(configPage1.flexEnabled)
{
if(flexCounter < 50)
{
currentStatus.flex = 0; //Standard GM Continental sensor reads from 50Hz (0 ethanol) to 150Hz (Pure ethanol). Subtracting 50 from the frequency therefore gives the ethanol percentage.
flexCounter = 0;
}
else if (flexCounter > 151) //1 pulse buffer
{
if(flexCounter < 169)
{
currentStatus.flex = 100; //Standard GM Continental sensor reads from 50Hz (0 ethanol) to 150Hz (Pure ethanol). Subtracting 50 from the frequency therefore gives the ethanol percentage.
flexCounter = 0;
}
else
{
//This indicates an error condition. Spec of the sensor is that errors are above 170Hz)
currentStatus.flex = 0;
flexCounter = 0;
}
}
else
{
currentStatus.flex = flexCounter - 50; //Standard GM Continental sensor reads from 50Hz (0 ethanol) to 150Hz (Pure ethanol). Subtracting 50 from the frequency therefore gives the ethanol percentage.
flexCounter = 0;
}
}
}
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) //AVR chips use the ISR for this
//Reset Timer2 to trigger in another ~1ms
TCNT2 = 131; //Preload timer2 with 100 cycles, leaving 156 till overflow.
TIFR2 = 0x00; //Timer2 INT Flag Reg: Clear Timer Overflow Flag
#endif
}