-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path3x3subplots.py
181 lines (165 loc) · 8.59 KB
/
3x3subplots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import sys
import os
import yt
import numpy as np
from yt import derived_field
import matplotlib.pyplot as plt
import matplotlib.axes as ax
from mpl_toolkits.axes_grid1 import AxesGrid
from matplotlib import pylab
from matplotlib import cm
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.ticker as ticker
from matplotlib import colors
from mpl_toolkits.axes_grid1 import make_axes_locatable
from matplotlib import colorbar
import glob
print("imported all packages!")
slice_direction = 'z'
#3 flavor neutrino derived fields: Number Density
#normalize by the trace
@derived_field(name="Norm", units="dimensionless", sampling_type="cell",force_override=True)
def _Norm(field, data):
return np.abs(data["N00_Re"]) + np.abs(data["N11_Re"]) + np.abs(data["N22_Re"])
@derived_field(name="N01_Norm", units="dimensionless", sampling_type="cell",force_override=True)
def _N01_Norm(field, data):
return np.abs(data["N00_Re"]) + np.abs(data["N11_Re"])
@derived_field(name="N02_Norm", units="dimensionless", sampling_type="cell",force_override=True)
def _N02_Norm(field, data):
return np.abs(data["N00_Re"]) + np.abs(data["N22_Re"])
@derived_field(name="N12_Norm", units="dimensionless", sampling_type="cell",force_override=True)
def _N12_Norm(field, data):
return np.abs(data["N11_Re"]) + np.abs(data["N22_Re"])
#individual flavor pairing magnitudes, 0=electron, 1=mu, 2=tau
@derived_field(name="N01_Mag", units="dimensionless", sampling_type="cell",force_override=True)
def _N01_Mag(field, data):
return np.sqrt((data["N01_Im"]/data["N01_Norm"])**2 + (data["N01_Re"]/data["N01_Norm"])**2)
@derived_field(name="N02_Mag", units="dimensionless", sampling_type="cell",force_override=True)
def _N02_Mag(field, data):
return np.sqrt((data["N02_Im"]/data["N02_Norm"])**2 + (data["N02_Re"]/data["N02_Norm"])**2)
@derived_field(name="N12_Mag", units="dimensionless", sampling_type="cell",force_override=True)
def _N12_Mag(field, data):
return np.sqrt((data["N12_Im"]/data["N12_Norm"])**2 + (data["N12_Re"]/data["N12_Norm"])**2)
#Diagonal components normalized
@derived_field(name="N00_Mag", units="dimensionless", sampling_type="cell",force_override=True)
def _N00_Mag(field, data):
return data["N00_Re"]/data["Norm"]
@derived_field(name="N11_Mag", units="dimensionless", sampling_type="cell",force_override=True)
def _N11_Mag(field, data):
return data["N11_Re"]/data["Norm"]
@derived_field(name="N22_Mag", units="dimensionless", sampling_type="cell",force_override=True)
def _N22_Mag(field, data):
return data["N22_Re"]/data["Norm"]
#total off-diagonal magnitude
@derived_field(name="OffDiag_Mag", units="dimensionless", sampling_type="cell",force_override=True)
def _Diag_Mag(field, data):
return np.sqrt((data["N01_Im"]/data["Norm"])**2 + (data["N01_Re"]/data["Norm"])**2 + (data["N02_Im"]/data["Norm"])**2 + (data["N02_Re"]/data["Norm"])**2 + (data["N12_Im"]/data["Norm"])**2 + (data["N12_Re"]/data["Norm"])**2)
#off-diagonal phases in degrees for each off-diagonal component is the arctan(Im/Re)
@derived_field(name="N01_Phase", units="dimensionless", sampling_type="cell",force_override=True)
def _N01_Phase(field, data):
return np.arctan2(data["N01_Im"],data["N01_Re"])*(180/np.pi)
@derived_field(name="N02_Phase", units="dimensionless", sampling_type="cell",force_override=True)
def _N02_Phase(field, data):
return np.arctan2(data["N02_Im"],data["N02_Re"])*(180/np.pi)
@derived_field(name="N12_Phase", units="dimensionless", sampling_type="cell",force_override=True)
def _N12_Phase(field, data):
return np.arctan2(data["N12_Im"],data["N12_Re"])*(180/np.pi)
print("defined all fields!")
plt.rc('axes', labelsize=18, linewidth=2)
plt.rc('xtick',labelsize=18)
plt.rc('ytick',labelsize=18)
plt.rcParams['xtick.major.width'] = 2
plt.rcParams['xtick.minor.width'] = 2
plt.rcParams['ytick.major.width'] = 2
plt.rcParams['ytick.minor.width'] = 2
plt.rcParams["xtick.major.size"] = 6
plt.rcParams["xtick.minor.size"] = 3
plt.rcParams["ytick.major.size"] = 6
plt.rcParams["ytick.minor.size"] = 3
rc = {"font.family" : "serif",
"mathtext.fontset" : "stix"}
plt.rcParams.update(rc)
plt.rcParams["font.serif"] = ["Times New Roman"] + plt.rcParams["font.serif"]
yt.funcs.mylog.setLevel(100)
filenames = sorted(glob.glob("plt*"))
for filename in filenames:
print(filename)
ds = yt.load(filename)
slc = ds.slice(slice_direction, 0.)
#use fixed resolution buffer to extract 2D slice data object information
if slice_direction == 'x':
i1=1
i2=2
if slice_direction == 'y':
i1 = 0
i2 = 2
if slice_direction == 'z':
i1 = 0
i2 = 1
frb = slc.to_frb(width = (ds.domain_right_edge[i1].value - ds.domain_left_edge[i1].value, 'cm'),
height = (ds.domain_right_edge[i2].value - ds.domain_left_edge[i2].value, 'cm'),
resolution = (ds.domain_dimensions[i1], ds.domain_dimensions[i2]))
#list of fields to plot ordered by row and then column
fields = [['N00_Mag','N01_Mag','N02_Mag'],
['N01_Phase','N11_Mag','N12_Mag'],
['N02_Phase','N12_Phase','N22_Mag']]
labels = [[r'$N_{ee}$',r'$N_{e\mu}$',r'$N_{e\tau}$'],
[r'$\phi_{e\mu}$',r'$N_{\mu\mu}$',r'$N_{\mu\tau}$'],
[r'$\phi_{e\tau}$',r'$\phi_{\mu\tau}$',r'$N_{\tau\tau}$']]
# Set up a 3x3 figure
fig, axes = plt.subplots(nrows=3, ncols=3, figsize=(15,15), sharex=True, sharey=True)
print("created figure")
#defining the two colorbars to be used
cax1 = fig.add_axes([.93, 0.122, 0.03, 0.76])
norm1 = colors.Normalize(vmin=0, vmax=0.6)
cmap = plt.get_cmap('viridis')
cb1 = colorbar.ColorbarBase(cax1, cmap=cmap,norm=norm1,orientation='vertical')
cb1.set_label(r'$N_{ij} / \mathrm{Tr}(N)$', fontsize=22)
cb1.ax.tick_params(axis='y', which='both', direction='in')
cb1.minorticks_on()
cax1.yaxis.set_major_locator(ticker.MultipleLocator(0.1))
cax1.yaxis.set_minor_locator(ticker.MultipleLocator(0.02))
cax2 = fig.add_axes([0.04, 0.122, 0.03, 0.76])
norm2 = colors.Normalize(vmin=-180, vmax=180)
cmap2 = plt.get_cmap('twilight')
cb2 = colorbar.ColorbarBase(cax2, cmap=cmap2,norm=norm2,orientation='vertical')
cax2.yaxis.set_ticks_position('left')
cax2.yaxis.set_label_position('left')
cb2.set_label(r'$\phi_{ij}$ (degrees)', fontsize=22)
cb2.ax.tick_params(axis='y', which='both', direction='in')
cax2.minorticks_on()
cax2.yaxis.set_major_locator(ticker.MultipleLocator(45))
cax2.yaxis.set_minor_locator(ticker.MultipleLocator(5))
for i in range(0,3):
for j in range(0,3):
ax = axes[i,j]
ax.minorticks_on()
ax.yaxis.set_major_locator(ticker.MultipleLocator(10))
ax.yaxis.set_minor_locator(ticker.MultipleLocator(2))
ax.xaxis.set_major_locator(ticker.MultipleLocator(10))
ax.xaxis.set_minor_locator(ticker.MultipleLocator(2))
ax.tick_params(axis='both', which='both', direction='in', right=True,top=True)
ax.text(0.1,0.9, "{}".format(labels[i][j]), fontsize=18, ha="center", va="center", transform=ax.transAxes, bbox=dict(facecolor='white', alpha=0.75, edgecolor='.75'))
#setting the phase plots
if ax == axes[1,0] or ax == axes[2,0] or ax == axes[2,1]:
im = ax.imshow(frb[fields[i][j]].d,origin='lower',extent=[ds.domain_left_edge[1].value,ds.domain_right_edge[1].value,ds.domain_left_edge[2].value,ds.domain_right_edge[2].value], vmin=-180, vmax=180, cmap='twilight')
#setting colorbar limits
im.set_clim(-180,180)
#setting the N magnitudes plots
else:
#origin=lower keeps image from getting flipped, extent gives the grid coordinates in physical units
im = ax.imshow(frb[fields[i][j]].d,origin='lower',extent=[ds.domain_left_edge[1].value,ds.domain_right_edge[1].value,ds.domain_left_edge[2].value,ds.domain_right_edge[2].value], vmin=0., vmax=0.6, cmap='viridis')
#setting colorbar limits
im.set_clim(0.,0.6)
label_arr = ["x","y","z"]
for a in axes[-1,:]: a.set_xlabel(label_arr[i1]+' (cm)')
for a in axes[:,0]: a.set_ylabel(label_arr[i2]+' (cm)')
#plt.tick_params(axis='both', which='both', direction='in', right=True,top=True)
#increases the spacing between subplots so axis labels don't overlap
plt.subplots_adjust(hspace=0.05,wspace=0.)
#fig.tight_layout()
#plt.show()
#fig.savefig(directory_out+"/"+"{0}_3x3subplot.pdf".format(ds),dpi=300, bbox_inches="tight")
fig.savefig("{0}_3x3subplot.png".format(ds),dpi=300, bbox_inches="tight")
print("successfully saved figure")
plt.close()