-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
82 lines (66 loc) · 2.58 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import torchvision.transforms as transforms
import torch.utils.data as data
import torchvision.datasets as datasets
import os
def get_cifar10_transforms():
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
return transform_train, transform_test
def get_alternative_cifar100_transforms():
# taken from https://jovian.com/tessdja/resnet-practice-cifar100-resnet
stats = ((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
transform_train = transforms.Compose([transforms.RandomCrop(32, padding=4, padding_mode='reflect'),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(*stats,inplace=True)])
transform_test = transforms.Compose([transforms.ToTensor(), transforms.Normalize(*stats)])
return transform_train, transform_test
def get_cifar100_transforms():
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
return transform, transform
def get_imagenet_transforms():
pass
def get_tiny_imagenet_dataloaders(batch_size):
# from https://github.com/tjmoon0104/pytorch-tiny-imagenet/tree/master
data_transforms = {
"train": transforms.Compose(
[
transforms.RandomHorizontalFlip(0.5),
transforms.ToTensor(),
transforms.Normalize([0.4802, 0.4481, 0.3975], [0.2302, 0.2265, 0.2262]),
]
),
"val": transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize([0.4802, 0.4481, 0.3975], [0.2302, 0.2265, 0.2262]),
]
),
"test": transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize([0.4802, 0.4481, 0.3975], [0.2302, 0.2265, 0.2262]),
]
),
}
data_dir = "~/datasets/tiny-imagenet-200/"
num_workers = {"train": 1, "val": 1, "test": 1}
image_datasets = {
x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ["train", "val", "test"]
}
dataloaders = {
x: data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True, num_workers=num_workers[x])
for x in ["train", "val", "test"]
}
return dataloaders