-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
157 lines (128 loc) · 4.77 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import numpy as np
def compute_ap(ranks, nres):
"""
Computes average precision for given ranked indexes.
Arguments
---------
ranks : zerro-based ranks of positive images
nres : number of positive images
Returns
-------
ap : average precision
"""
# number of images ranked by the system
nimgranks = len(ranks)
# accumulate trapezoids in PR-plot
ap = 0
recall_step = 1.0 / nres
for j in np.arange(nimgranks):
rank = ranks[j]
if rank == 0:
precision_0 = 1.0
else:
precision_0 = float(j) / rank
precision_1 = float(j + 1) / (rank + 1)
ap += (precision_0 + precision_1) * recall_step / 2.0
return ap
def compute_map(ranks, gnd, kappas=[]):
"""
Computes the mAP for a given set of returned results.
Usage:
map = compute_map (ranks, gnd)
computes mean average precsion (map) only
map, aps, pr, prs = compute_map (ranks, gnd, kappas)
computes mean average precision (map), average precision (aps) for each query
computes mean precision at kappas (pr), precision at kappas (prs) for each query
Notes:
1) ranks starts from 0, ranks.shape = db_size X #queries
2) The junk results (e.g., the query itself) should be declared in the gnd stuct array
3) If there are no positive images for some query, that query is excluded from the evaluation
"""
map = 0.0
nq = len(gnd) # number of queries
aps = np.zeros(nq)
pr = np.zeros(len(kappas))
prs = np.zeros((nq, len(kappas)))
nempty = 0
for i in np.arange(nq):
qgnd = np.array(gnd[i]["ok"])
# no positive images, skip from the average
if qgnd.shape[0] == 0:
aps[i] = float("nan")
prs[i, :] = float("nan")
nempty += 1
continue
try:
qgndj = np.array(gnd[i]["junk"])
except:
qgndj = np.empty(0)
# sorted positions of positive and junk images (0 based)
pos = np.arange(ranks.shape[0])[np.in1d(ranks[:, i], qgnd)]
junk = np.arange(ranks.shape[0])[np.in1d(ranks[:, i], qgndj)]
k = 0
ij = 0
if len(junk):
# decrease positions of positives based on the number of
# junk images appearing before them
ip = 0
while ip < len(pos):
while ij < len(junk) and pos[ip] > junk[ij]:
k += 1
ij += 1
pos[ip] = pos[ip] - k
ip += 1
# compute ap
ap = compute_ap(pos, len(qgnd))
map = map + ap
aps[i] = ap
# compute precision @ k
pos += 1 # get it to 1-based
for j in np.arange(len(kappas)):
kq = min(max(pos), kappas[j])
prs[i, j] = (pos <= kq).sum() / kq
pr = pr + prs[i, :]
map = map / (nq - nempty)
pr = pr / (nq - nempty)
return map, aps, pr, prs
def compute_map_and_print(dataset, ranks, gnd, kappas=[1, 5, 10]):
# old evaluation protocol
if dataset.startswith("oxford") or dataset.startswith("paris"):
map, aps, _, _ = compute_map(ranks, gnd)
print(">> {}: mAP {:.2f}".format(dataset,
np.around(map * 100, decimals=2)))
# new evaluation protocol
elif dataset.startswith("roxford") or dataset.startswith("rparis"):
gnd_t = []
for i in range(len(gnd)):
g = {}
g["ok"] = np.concatenate([gnd[i]["easy"]])
g["junk"] = np.concatenate([gnd[i]["junk"], gnd[i]["hard"]])
gnd_t.append(g)
mapE, apsE, mprE, prsE = compute_map(ranks, gnd_t, kappas)
gnd_t = []
for i in range(len(gnd)):
g = {}
g["ok"] = np.concatenate([gnd[i]["easy"], gnd[i]["hard"]])
g["junk"] = np.concatenate([gnd[i]["junk"]])
gnd_t.append(g)
mapM, apsM, mprM, prsM = compute_map(ranks, gnd_t, kappas)
gnd_t = []
for i in range(len(gnd)):
g = {}
g["ok"] = np.concatenate([gnd[i]["hard"]])
g["junk"] = np.concatenate([gnd[i]["junk"], gnd[i]["easy"]])
gnd_t.append(g)
mapH, apsH, mprH, prsH = compute_map(ranks, gnd_t, kappas)
print(">> {}: mAP E: {}, M: {}, H: {}".format(
dataset,
np.around(mapE * 100, decimals=2),
np.around(mapM * 100, decimals=2),
np.around(mapH * 100, decimals=2),
))
print(">> {}: mP@k{} E: {}, M: {}, H: {}".format(
dataset,
kappas,
np.around(mprE * 100, decimals=2),
np.around(mprM * 100, decimals=2),
np.around(mprH * 100, decimals=2),
))