-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlam_type.ml
372 lines (319 loc) · 11.6 KB
/
lam_type.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
type id = string
(* op := + | - | * | / *)
type binop = Plus | Minus | Times | Div
(* τ := int | τ → τ *)
type typ = Int
| Fun of typ * typ
(* Γ := · | Γ, x:τ *)
type env = (id * typ) list
(* e := e e | λx.e | e op e | x | n *)
type expr = App of expr * expr
| Lam of id * typ * expr
| Binop of binop * expr * expr
| Var of id
| Num of int
(**********************************************************************)
open Printf
let fprintf_bop out = function
| Plus -> fprintf out "+"
| Minus -> fprintf out "-"
| Times -> fprintf out "*"
| Div -> fprintf out "/"
let rec fprintf_type out = function
| Int -> fprintf out "int"
| Fun (t1, t2) -> fprintf out "(%a→%a)" fprintf_type t1 fprintf_type t2
let rec fprintf_expr out = function
| Num n -> fprintf out "%d" n
| Var v -> fprintf out "%s" v
| Binop (b, e1, e2) ->
fprintf out "(%a %a %a)" fprintf_expr e1 fprintf_bop b fprintf_expr e2
| Lam (i, ty, e) ->
fprintf out "(λ%s:%a.%a)" i fprintf_type ty fprintf_expr e
| App (e1, e2) ->
fprintf out "%a %a" fprintf_expr e1 fprintf_expr e2
(**********************************************************************)
exception TypeMismatch of typ * typ
exception TypeError of string * typ
exception OpenExpr of id
(* Typechecking *)
(* assert_equal_type checks that the two type arguments are equivalent.
* Only run for the side effect of raising the TypeMismatch exn if not. *)
let rec assert_equal_type = function
| (Int, Int) -> ()
| (Fun (t1, t2), Fun (t1', t2')) ->
assert_equal_type (t1, t1'); assert_equal_type (t2, t2')
| (t1, t2) -> raise (TypeMismatch (t1, t2))
(* tc_expr takes an environment and an expression to check, returning the
* type of the expression if typechecking succeeds.
* That is, tc_expr implements the judgment Γ ⊢ e : τ. *)
let rec tc_expr env = function
(* --------------
* Γ ⊢ n : Int *)
| Num n -> Int
(* Γ(x) = τ
* --------------
* Γ ⊢ x : τ
*
* If the variable isn't in the environment, then we have an open expr. *)
| Var v -> (try List.assoc v env with Not_found -> raise (OpenExpr v))
(* Currently we just have Int * Int -> Int operations, so...
*
* Γ ⊢ e1 : int Γ ⊢ e2 : int
* -----------------------------
* Γ ⊢ e1 op e2 : int *)
| Binop (b, e1, e2) ->
assert_equal_type ((tc_expr env e1), Int);
assert_equal_type ((tc_expr env e2), Int);
Int
(* Γ, x:τ1 ⊢ e : τ2
* -------------------------
* Γ ⊢ λx:τ1.e : τ1 → τ2 *)
| Lam (i, ty, e) ->
Fun (ty, tc_expr ((i, ty) :: env) e)
(* Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ1
* ---------------------------------
* Γ ⊢ e1 e2 : τ2 *)
| App (e1, e2) ->
(match tc_expr env e1 with
| Fun (t1, t2) -> assert_equal_type ((tc_expr env e2), t1); t2
| t -> raise (TypeError ("Expected arrow type, got type", t)))
let typecheck e = tc_expr [] e
(**********************************************************************)
(* Helpers for Evaluation *)
(* With typechecking, we should never get the following exception. *)
exception EvalError of string * expr
(* Since we have division, we can get the built-in Division_by_zero exn,
* and our type system does not protect against that. *)
(* subst x v e = e[x ↦ v]
* This subst does not worry about capture in the value being substituted
* for the variable since I assume that we're working on closed expressions
* and we're call-by-value. Our typechecker will fail on open expressions.
*)
let rec subst id v = function
(* n[x ↦ v] = n *)
| Num n -> Num n
(* x[x ↦ v] = v
x1[x2 ↦ v] = x1 where x1 ≠ x2 *)
| Var i -> if i = id then v else Var i
(* (e1 op e2)[x ↦ v] = e1[x ↦ v] op e2[x ↦ v] *)
| Binop (b, e1, e2) -> Binop (b, subst id v e1, subst id v e2)
(* (λx:τ.e)[x ↦ v] = λx:τ.e
(λx1:τ.e)[x2 ↦ v] = λx1:τ.e[x2 ↦ v] where x1 ≠ x2 *)
| Lam (i, ty, e) ->
if id = i then Lam (i, ty, e) else Lam (i, ty, subst id v e)
(* (e1 e2)[x ↦ v] = e1[x ↦ v] e2[x ↦ v] *)
| App (e1, e2) -> App (subst id v e1, subst id v e2)
(* These assert functions just keep us from getting non-exhaustive match
* warnings (and also provide a more useful exception than No_match). *)
let assert_num = function
| Num n -> n
| e -> raise (EvalError ("Expected number, got", e))
let assert_lam = function
| Lam (i, ty, e) -> (i, ty, e)
| e -> raise (EvalError ("Expected lambda, got", e))
(**********************************************************************)
(* Big-Step or Natural Semantics *)
(* eval e = v when e ⇓ v *)
let rec eval = function
(* n ⇓ n *)
| Num n -> Num n
(* λx:τ.e ⇓ λx:τ.e *)
| Lam (id, ty, body) -> Lam (id, ty, body)
(* No evaluation rule for open variables. *)
| Var v -> raise (OpenExpr v)
(* e1 ⇓ n1 e2 ⇓ n2
* --------------------- where n3 = n1 + n2
* e1 + e2 ⇓ n3
*
* Similarly for -, *, / *)
| Binop (b, e1, e2) ->
let n1 = assert_num (eval e1) in
let n2 = assert_num (eval e2) in
(match b with
| Plus -> Num (n1 + n2)
| Minus -> Num (n1 - n2)
| Times -> Num (n1 * n2)
| Div -> Num (n1 / n2))
(* e1 ⇓ λx:τ.e e2 ⇓ v1 e[x ↦ v1] ⇓ v2
* -----------------------------------------
* e1 e2 ⇓ v2 *)
| App (e1, e2) ->
let (id, ty, body) = assert_lam (eval e1) in
let arg = eval e2 in
eval (subst id arg body)
(**********************************************************************)
(* Small Step or Structured Operational Semantics *)
(* Predicate for value expressions. Values are irreducible expressions. *)
let value = function
| Num n -> true
| Lam (i, ty, e) -> true
| _ -> false
(* Computes the reflexive, transitive closure of the relation f on
* expression. This closure maps values to themselves. *)
let rec refl_trans_closure f e =
if value e
then e
else refl_trans_closure f (f e)
(* step_one e = e' when e ↝ e' *)
let rec step_one = function
| Binop (b, e1, e2) ->
if value e1
then
if value e2
(* n1 + n2 ↝ n3 where n3 = n1 + n2 (similarly for - * /) *)
then let n1 = assert_num e1 in
let n2 = assert_num e2 in
(match b with
Plus -> Num (n1 + n2)
| Minus -> Num (n1 - n2)
| Times -> Num (n1 * n2)
| Div -> Num (n1 / n2))
(* e2 ↝ e2'
* ----------------------
* v1 op e2 ↝ v1 op e2' *)
else Binop (b, e1, step_one e2)
(* e1 ↝ e1'
* ----------------------
* e1 op e2 ↝ e1' op e2 *)
else Binop (b, step_one e1, e2)
| App (e1, e2) ->
if value e1
then
if value e2
(* (λx:τ.e) v ↝ e[x ↦ v] *)
then let (i, ty, body) = assert_lam e1
in subst i e2 body
(* e2 ↝ e2'
* -----------------
* v1 e2 ↝ v1 e2' *)
else App (e1, step_one e2)
(* e1 ↝ e1'
* -----------------
* e1 e2 ↝ e1' e2 *)
else App (step_one e1, e2)
| e -> raise (EvalError ("Should not try to step", e))
(* Reflexive, transitive closure of ↝, so step_many e = v when e ↝* v *)
let step_many = refl_trans_closure step_one
(**********************************************************************)
(* Reduction Semantics *)
(* E = [] | E e | v E | E op e | v op E
*
* Here, we'll use expr for v, and just keep that invariant manually. *)
type ctx = Hole
| AppLeft of ctx * expr
| AppRight of expr * ctx
| OpLeft of binop * ctx * expr
| OpRight of binop * expr * ctx
(* Used to assert the argument is a value in beta reduction *)
let assert_value e =
if value e then () else raise (EvalError ("Expected value, got", e))
(* Performs the unique decomposition of e into E[e'] and returns (E, e'). *)
let rec split = function
| Num n -> (Hole, Num n)
| Lam (i, ty, e) -> (Hole, Lam (i, ty, e))
| Var x -> raise (OpenExpr x)
| Binop (b, e1, e2) ->
if value e1
then
if value e2
then (Hole, Binop (b, e1, e2))
else let (c, e) = split e2
in (OpRight (b, e1, c), e)
else let (c, e) = split e1
in (OpLeft (b, c, e2), e)
| App (e1, e2) ->
if value e1
then
if value e2
then (Hole, App (e1, e2))
else let (c, e) = split e2
in (AppRight (e1, c), e)
else let (c, e) = split e1
in (AppLeft (c, e2), e)
(* Takes an expression and a context and recomposes them into an expression. *)
let rec recompose e = function
| Hole -> e
| OpLeft (b, c, e2) -> Binop (b, recompose e c, e2)
| OpRight (b, e1, c) -> Binop (b, e1, recompose e c)
| AppLeft (c, e2) -> App (recompose e c, e2)
| AppRight (e1, c) -> App (e1, recompose e c)
(* Performs the reduction rules e ↪ e' of our language. *)
let rec red_step = function
(* n1 + n2 ↪ n3, where n3 = n1 + n2 (similarly for -, *, /) *)
| Binop (b, e1, e2) ->
let n1 = assert_num e1 in
let n2 = assert_num e2 in
(match b with
| Plus -> Num (n1 + n2)
| Minus -> Num (n1 - n2)
| Times -> Num (n1 * n2)
| Div -> Num (n1 / n2))
(* (λx:τ.e) v ↪ e[x ↦ v] *)
| App (e1, e2) ->
let (id, ty, body) = assert_lam e1 in
assert_value e2;
subst id e2 body
| e ->
raise (EvalError ("unexpected expression to step:", e))
(* Performs ⇒, the compatible closure of ↪.
* I.e., compatible_closure e = e' if E[e] ⇒ E[e'], and
* E[e] ⇒ E[e'] if e ↪ e'. *)
let compatible_closure e =
let (c, e') = split e in (recompose (red_step e') c)
(* Performs the reflexive, transitive closure of ⇒.
* I.e., step_closure e = v if e ⇒* v. *)
let reduction_relation = refl_trans_closure compatible_closure
(**********************************************************************)
(* Testing framework, prints out "e : τ ⇓ v, ↝* v, ⇒* v" for success,
* otherwise prints an error after printing out the original expression
* (and type if the error is only in evaluation, which should only happen
* for division by zero). *)
let test_expr e =
fprintf_expr stdout e;
(try (let ty = typecheck e in
printf " : %a" fprintf_type ty;
let v = eval e in
assert_value v;
printf " ⇓ %a" fprintf_expr v;
let v = step_many e in
assert_value v;
printf ", ↝* %a" fprintf_expr v;
let v = reduction_relation e in
assert_value v;
printf ", ⇒* %a\n" fprintf_expr v)
with TypeMismatch (t1, t2) ->
printf "\nERROR: Type %a does not match type %a\n"
fprintf_type t1 fprintf_type t2
| TypeError (s, ty) ->
printf "\nERROR: %s %a\n" s fprintf_type ty
| OpenExpr i ->
printf "\nERROR: Variable %s unbound\n" i
| Division_by_zero ->
printf "\nERROR: Division by zero\n"
| EvalError (s, exp) ->
printf "\nERROR: %s %a\n" s fprintf_expr exp)
(* Passing testcases *)
let test1 = Num 5
let test2 = Lam ("x", Int, Var "x")
let test3 = App (Lam ("x", Int, Var "x"), Num 3)
let test4 = App (App (Lam ("x", Int, Lam ("y", Int, Var "x")), Num 4), Num 5)
let test5 = Binop (Plus, Num 3, Num 4);;
let test6 = App (Lam ("x", Fun (Int, Int), App (Var "x", Num 3)),
Lam ("x", Int, Var "x"));;
test_expr test1;;
test_expr test2;;
test_expr test3;;
test_expr test4;;
test_expr test5;;
test_expr test6;;
(* Failing testcases *)
let fail1 = Var "x"
let fail2 = Lam ("x", Int, App (Var "x", Num 3))
let fail3 = App (Lam ("x", Int, Var "x"), Lam ("x", Int, Var "x"));;
let fail4 = Binop (Plus, Lam ("x", Int, Var "x"), Num 5);;
let fail5 = Binop (Div, Num 3, Num 0);;
test_expr fail1;;
test_expr fail2;;
test_expr fail3;;
test_expr fail4;;
test_expr fail5;;