-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
30 lines (25 loc) · 1.06 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
from flask import Flask, render_template, request
import pandas as pd
import numpy as np
import pickle
app = Flask(__name__)
df = pd.read_csv('cleaned_car_price.csv')
lr_model = pickle.load(open('CarPricePredictorModel.pkl', 'rb'))
@app.route('/')
def index():
manufacturers = sorted(df['company'].unique())
models = sorted(df['name'].unique())
years = sorted(df['year'].unique(), reverse=True)
fuels = sorted(df['fuel_type'].unique())
return render_template('index.html', manufacturers=manufacturers, models=models, years=years, fuels=fuels)
@app.route('/predict', methods=['POST'])
def predict():
manufacturer = request.form.get('manufacturer')
model = request.form.get('model')
year = request.form.get('year')
fuel = request.form.get('fuel')
km_driven = request.form.get('km_driven')
prediction = lr_model.predict(pd.DataFrame([[model, manufacturer, year, km_driven, fuel]], columns=['name', 'company', 'year', 'kms_driven', 'fuel_type']))
return str(np.round(prediction[0], 2))
if __name__ == '__main__':
app.run(debug=True)