-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_rc_hisContra.py
executable file
·652 lines (561 loc) · 29.9 KB
/
train_rc_hisContra.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
#!/usr/bin/env python
# coding=utf-8
# Copyright 2020 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for question answering using a slightly adapted version of the 🤗 Trainer.
"""
# You can also adapt this script on your own question answering task. Pointers for this are left as comments.
import logging
import os
import sys
import datasets
from datasets import load_dataset, load_metric
import transformers
from transformers import (
DataCollatorWithPadding,
EvalPrediction,
PreTrainedTokenizerFast,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint, IntervalStrategy
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
from densephrases import Options
from densephrases.utils.utils_qa import postprocess_qa_predictions
from densephrases.utils.trainer_qa import QuestionAnsweringTrainer
from densephrases.utils.single_utils import load_encoder
from densephrases.utils.data_utils import TrueCaser
from scripts.preprocess.convert_squad_to_hf_hisContra import convert_squad_to_hf
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.13.0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")
logger = logging.getLogger(__name__)
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
# See options in densephrases.options
options = Options()
options.add_model_options()
options.add_data_options()
options.add_rc_options()
args = options.parse()
# # Setup logging
# logging.basicConfig(
# format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
# datefmt="%m/%d/%Y %H:%M:%S",
# handlers=[logging.StreamHandler(sys.stdout)],
# )
# TODO
# Setup logging
logging.basicConfig(
filename=args.output_dir+'/logs.log', #
filemode='w',
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
force=True
)
log_level = args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {args.local_rank}, device: {args.device}, n_gpu: {args.n_gpu}"
+ f"distributed training: {bool(args.local_rank != -1)}, 16-bits training: {args.fp16}"
)
logger.info(f"Training/evaluation parameters {args}")
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(args.output_dir)
if last_checkpoint is None and len(os.listdir(args.output_dir)) > 0:
raise ValueError(
f"Output directory ({args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None and args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Set seed before initializing model.
set_seed(args.seed)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
data_files = {}
if args.train_file is not None:
if args.convert_squad_to_hf:
data_files["train"] = convert_squad_to_hf(args.train_file)
else:
data_files["train"] = args.train_file
extension = args.train_file.split(".")[-1]
if args.validation_file is not None:
if args.convert_squad_to_hf:
data_files["validation"] = convert_squad_to_hf(args.validation_file)
else:
data_files["validation"] = args.validation_file
extension = args.validation_file.split(".")[-1]
if args.test_file is not None:
if args.convert_squad_to_hf:
data_files["test"] = convert_squad_to_hf(args.test_file)
else:
data_files["test"] = args.test_file
extension = args.test_file.split(".")[-1]
raw_datasets = load_dataset(extension, data_files=data_files, field="data", cache_dir=args.cache_dir)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Initialize or load encoder
model, tokenizer, _ = load_encoder(args.device, args)
# Tokenizer check: this script requires a fast tokenizer.
if not isinstance(tokenizer, PreTrainedTokenizerFast):
raise ValueError(
"This example script only works for models that have a fast tokenizer. Checkout the big table of models "
"at https://huggingface.co/transformers/index.html#supported-frameworks to find the model types that meet this "
"requirement"
)
# Preprocessing the datasets.
# Preprocessing is slighlty different for training and evaluation.
if args.do_train:
column_names = raw_datasets["train"].column_names
elif args.do_eval:
column_names = raw_datasets["validation"].column_names
else:
column_names = raw_datasets["test"].column_names
question_column_name = "question" if "question" in column_names else column_names[0]
context_column_name = "context" if "context" in column_names else column_names[1]
answer_column_name = "answers" if "answers" in column_names else column_names[2]
# TODO
previous_question_column_name = "previous_question" if "previous_question" in column_names else column_names[-1]
#import pdb; pdb.set_trace()
# Padding side determines if we do (question|context) or (context|question).
pad_on_right = tokenizer.padding_side == "right"
if args.max_seq_length > tokenizer.model_max_length:
args.warning(
f"The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the"
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
)
max_seq_length = min(args.max_seq_length, tokenizer.model_max_length)
max_query_length = args.max_query_length
logger.info('Loading truecaser')
if args.truecase:
truecase = TrueCaser(os.path.join(os.environ['DATA_DIR'], args.truecase_path))
# Training preprocessing
def prepare_train_features(examples):
# Some of the questions have lots of whitespace on the left, which is not useful and will make the
# truncation of the context fail (the tokenized question will take a lots of space). So we remove that
# left whitespace
examples[question_column_name] = [q.lstrip() for q in examples[question_column_name]]
# TODO
examples[previous_question_column_name] = [pq.lstrip() for pq in examples[previous_question_column_name]]
# Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
# in one example possible giving several features when a context is long, each of those features having a
# context that overlaps a bit the context of the previous feature.
if args.append_title:
tokenized_examples = tokenizer(
examples['title' if pad_on_right else context_column_name],
examples[context_column_name if pad_on_right else 'title'],
truncation="only_second" if pad_on_right else "only_first",
max_length=max_seq_length,
stride=args.doc_stride,
return_overflowing_tokens=True,
return_offsets_mapping=True,
padding="max_length" if args.pad_to_max_length else False,
)
else:
tokenized_examples = tokenizer(
examples[context_column_name],
truncation="only_first",
max_length=max_seq_length,
stride=args.doc_stride,
return_overflowing_tokens=True,
return_offsets_mapping=True,
padding="max_length" if args.pad_to_max_length else False,
)
tokenized_questions = tokenizer(
examples[question_column_name],
truncation="only_first",
max_length=max_query_length,
return_overflowing_tokens=False,
return_offsets_mapping=False,
padding="max_length" if args.pad_to_max_length else False,
)
# TODO
tokenized_previous_questions = tokenizer(
examples[previous_question_column_name],
truncation="only_first",
max_length=max_query_length,
return_overflowing_tokens=False,
return_offsets_mapping=False,
padding="max_length" if args.pad_to_max_length else False,
)
#import pdb; pdb.set_trace()
# Since one example might give us several features if it has a long context, we need a map from a feature to
# its corresponding example. This key gives us just that.
sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping")
# The offset mappings will give us a map from token to character position in the original context. This will
# help us compute the start_positions and end_positions.
offset_mapping = tokenized_examples.pop("offset_mapping")
# Inflate questions based on sample_mapping
tokenized_examples['input_ids_'] = [tokenized_questions['input_ids'][i] for i in sample_mapping]
tokenized_examples['token_type_ids_'] = [tokenized_questions['token_type_ids'][i] for i in sample_mapping]
tokenized_examples['attention_mask_'] = [tokenized_questions['attention_mask'][i] for i in sample_mapping]
# TODO
# Inflate questions based on sample_mapping
tokenized_examples['input_ids_previous_question'] = [tokenized_previous_questions['input_ids'][i] for i in sample_mapping]
tokenized_examples['token_type_ids_previous_question'] = [tokenized_previous_questions['token_type_ids'][i] for i in sample_mapping]
tokenized_examples['attention_mask_previous_question'] = [tokenized_previous_questions['attention_mask'][i] for i in sample_mapping]
# Let's label those examples!
tokenized_examples["start_positions"] = []
tokenized_examples["end_positions"] = []
for i, offsets in enumerate(offset_mapping):
# We will label impossible answers with the index of the CLS token.
input_ids = tokenized_examples["input_ids"][i]
cls_index = input_ids.index(tokenizer.cls_token_id)
# Grab the sequence corresponding to that example (to know what is the context and what is the question).
sequence_ids = tokenized_examples.sequence_ids(i)
context_index = 1 if pad_on_right and args.append_title else 0
# One example can give several spans, this is the index of the example containing this span of text.
sample_index = sample_mapping[i]
answers = examples[answer_column_name][sample_index]
# If no answers are given, set the cls_index as answer.
if len(answers["answer_start"]) == 0:
tokenized_examples["start_positions"].append(cls_index)
tokenized_examples["end_positions"].append(cls_index)
else:
# Start/end character index of the answer in the text.
start_char = answers["answer_start"][0]
end_char = start_char + len(answers["text"][0])
# Start token index of the current span in the text.
token_start_index = 0
while sequence_ids[token_start_index] != context_index:
token_start_index += 1
# End token index of the current span in the text.
token_end_index = len(input_ids) - 1
while sequence_ids[token_end_index] != context_index:
token_end_index -= 1
# Detect if the answer is out of the span (in which case this feature is labeled with the CLS index).
if not (offsets[token_start_index][0] <= start_char and offsets[token_end_index][1] >= end_char):
tokenized_examples["start_positions"].append(cls_index)
tokenized_examples["end_positions"].append(cls_index)
else:
# Otherwise move the token_start_index and token_end_index to the two ends of the answer.
# Note: we could go after the last offset if the answer is the last word (edge case).
while token_start_index < len(offsets) and offsets[token_start_index][0] <= start_char:
token_start_index += 1
tokenized_examples["start_positions"].append(token_start_index - 1)
while offsets[token_end_index][1] >= end_char:
token_end_index -= 1
tokenized_examples["end_positions"].append(token_end_index + 1)
return tokenized_examples
if args.do_train:
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = raw_datasets["train"]
if args.max_train_samples is not None:
# We will select sample from whole data if argument is specified
train_dataset = train_dataset.select(range(args.max_train_samples))
if args.truecase:
for idx in range(len(train_dataset)):
q = train_dataset[idx][question_column_name]
train_dataset[idx][question_column_name] = truecase.get_true_case(q) if q == q.lower() else q
# TODO
pq = train_dataset[idx][previous_question_column_name]
train_dataset[idx][previous_question_column_name] = truecase.get_true_case(pq) if pq == pq.lower() else pq
# Create train feature from dataset
with args.main_process_first(desc="train dataset map pre-processing"):
train_dataset = train_dataset.map(
prepare_train_features,
batched=True,
num_proc=args.preprocessing_num_workers,
# num_proc=1,
remove_columns=column_names,
load_from_cache_file=not args.overwrite_cache,
desc="Running tokenizer on train dataset",
)
if args.max_train_samples is not None:
# Number of samples might increase during Feature Creation, We select only specified max samples
train_dataset = train_dataset.select(range(args.max_train_samples))
# Validation preprocessing
def prepare_validation_features(examples):
# Some of the questions have lots of whitespace on the left, which is not useful and will make the
# truncation of the context fail (the tokenized question will take a lots of space). So we remove that
# left whitespace
examples[question_column_name] = [q.lstrip() for q in examples[question_column_name]]
# TODO
examples[previous_question_column_name] = [pq.lstrip() for pq in examples[previous_question_column_name]]
# Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
# in one example possible giving several features when a context is long, each of those features having a
# context that overlaps a bit the context of the previous feature.
if args.append_title:
tokenized_examples = tokenizer(
examples['title' if pad_on_right else context_column_name],
examples[context_column_name if pad_on_right else 'title'],
truncation="only_second" if pad_on_right else "only_first",
max_length=max_seq_length,
stride=args.doc_stride,
return_overflowing_tokens=True,
return_offsets_mapping=True,
padding="max_length" if args.pad_to_max_length else False,
)
else:
tokenized_examples = tokenizer(
examples[context_column_name],
truncation="only_first",
max_length=max_seq_length,
stride=args.doc_stride,
return_overflowing_tokens=True,
return_offsets_mapping=True,
padding="max_length" if args.pad_to_max_length else False,
)
tokenized_questions = tokenizer(
examples[question_column_name],
truncation="only_first",
max_length=max_query_length,
return_overflowing_tokens=False,
return_offsets_mapping=False,
padding="max_length" if args.pad_to_max_length else False,
)
# TODO
tokenized_previous_questions = tokenizer(
examples[previous_question_column_name],
truncation="only_first",
max_length=max_query_length,
return_overflowing_tokens=False,
return_offsets_mapping=False,
padding="max_length" if args.pad_to_max_length else False,
)
# Since one example might give us several features if it has a long context, we need a map from a feature to
# its corresponding example. This key gives us just that.
sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping")
# Inflate questions based on sample_mapping
tokenized_examples['input_ids_'] = [tokenized_questions['input_ids'][i] for i in sample_mapping]
tokenized_examples['token_type_ids_'] = [tokenized_questions['token_type_ids'][i] for i in sample_mapping]
tokenized_examples['attention_mask_'] = [tokenized_questions['attention_mask'][i] for i in sample_mapping]
# TODO
tokenized_examples['input_ids_previous_question'] = [tokenized_previous_questions['input_ids'][i] for i in sample_mapping]
tokenized_examples['token_type_ids_previous_question'] = [tokenized_previous_questions['token_type_ids'][i] for i in sample_mapping]
tokenized_examples['attention_mask_previous_question'] = [tokenized_previous_questions['attention_mask'][i] for i in sample_mapping]
# For evaluation, we will need to convert our predictions to substrings of the context, so we keep the
# corresponding example_id and we will store the offset mappings.
tokenized_examples["example_id"] = []
for i in range(len(tokenized_examples["input_ids"])):
# Grab the sequence corresponding to that example (to know what is the context and what is the question).
sequence_ids = tokenized_examples.sequence_ids(i)
context_index = 1 if pad_on_right and args.append_title else 0
# One example can give several spans, this is the index of the example containing this span of text.
sample_index = sample_mapping[i]
tokenized_examples["example_id"].append(examples["id"][sample_index])
# Set to None the offset_mapping that are not part of the context so it's easy to determine if a token
# position is part of the context or not.
tokenized_examples["offset_mapping"][i] = [
(o if sequence_ids[k] == context_index else None)
for k, o in enumerate(tokenized_examples["offset_mapping"][i])
]
return tokenized_examples
if args.do_eval:
if "validation" not in raw_datasets:
raise ValueError("--do_eval requires a validation dataset")
eval_examples = raw_datasets["validation"]
if args.max_eval_samples is not None:
# We will select sample from whole data
eval_examples = eval_examples.select(range(args.max_eval_samples))
if args.truecase:
for idx in range(len(eval_examples)):
q = eval_examples[idx][question_column_name]
eval_examples[idx][question_column_name] = truecase.get_true_case(q) if q == q.lower() else q
# TODO
pq = eval_examples[idx][previous_question_column_name]
eval_examples[idx][previous_question_column_name] = truecase.get_true_case(pq) if pq == pq.lower() else pq
# Validation Feature Creation
with args.main_process_first(desc="validation dataset map pre-processing"):
eval_dataset = eval_examples.map(
prepare_validation_features,
batched=True,
num_proc=args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not args.overwrite_cache,
desc="Running tokenizer on validation dataset",
)
if args.max_eval_samples is not None:
# During Feature creation dataset samples might increase, we will select required samples again
eval_dataset = eval_dataset.select(range(args.max_eval_samples))
if args.do_predict:
if "test" not in raw_datasets:
raise ValueError("--do_predict requires a test dataset")
predict_examples = raw_datasets["test"]
if args.max_predict_samples is not None:
# We will select sample from whole data
predict_examples = predict_examples.select(range(args.max_predict_samples))
if args.truecase:
for idx in range(len(predict_examples)):
q = predict_examples[idx][question_column_name]
predict_examples[idx][question_column_name] = truecase.get_true_case(q) if q == q.lower() else q
# TODO
pq = predict_examples[idx][previous_question_column_name]
predict_examples[idx][previous_question_column_name] = truecase.get_true_case(pq) if pq == pq.lower() else pq
# Predict Feature Creation
with args.main_process_first(desc="prediction dataset map pre-processing"):
predict_dataset = predict_examples.map(
prepare_validation_features,
batched=True,
num_proc=args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not args.overwrite_cache,
desc="Running tokenizer on prediction dataset",
)
if args.max_predict_samples is not None:
# During Feature creation dataset samples might increase, we will select required samples again
predict_dataset = predict_dataset.select(range(args.max_predict_samples))
# Data collator
# We have already padded to max length if the corresponding flag is True, otherwise we need to pad in the data
# collator.
data_collator = (
default_data_collator
if args.pad_to_max_length
else DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8 if args.fp16 else None)
)
# Post-processing:
def post_processing_function(examples, features, predictions, stage="eval", filter_threshold=-1e5):
# Post-processing: we match the start logits and end logits to answers in the original context.
predictions, save_rate = postprocess_qa_predictions(
examples=examples,
features=features,
predictions=predictions,
version_2_with_negative=args.version_2_with_negative,
n_best_size=args.n_best_size,
max_answer_length=args.max_answer_length,
null_score_diff_threshold=args.null_score_diff_threshold,
output_dir=args.output_dir,
log_level=log_level,
prefix=stage,
filter_threshold=filter_threshold,
)
# Format the result to the format the metric expects.
if args.version_2_with_negative:
formatted_predictions = [
{"id": k, "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items()
]
else:
formatted_predictions = [{"id": k, "prediction_text": v} for k, v in predictions.items()]
references = [{"id": ex["id"], "answers": ex[answer_column_name]} for ex in examples]
return EvalPrediction(predictions=formatted_predictions, label_ids=references), save_rate
metric = load_metric("squad_v2" if args.version_2_with_negative else "squad")
def compute_metrics(p: EvalPrediction):
return metric.compute(predictions=p.predictions, references=p.label_ids)
if args.evaluate_during_training:
args.evaluation_strategy = IntervalStrategy("steps")
args.save_steps = int(len(train_dataset) // args.per_device_train_batch_size * args.num_train_epochs) // 10
args.eval_steps = args.save_steps
args.load_best_model_at_end = True
args.save_total_limit = 5
args.metric_for_best_model = "eval_exact_match"
args.greater_is_better = True
logger.info(f"Will save the model for every {args.save_steps} steps")
# Initialize our Trainer
trainer = QuestionAnsweringTrainer(
model=model,
args=args,
train_dataset=train_dataset if args.do_train else None,
eval_dataset=eval_dataset if args.do_eval else None,
eval_examples=eval_examples if args.do_eval else None,
tokenizer=tokenizer,
data_collator=data_collator,
post_process_function=post_processing_function,
compute_metrics=compute_metrics,
)
#import pdb; pdb.set_trace()
#tokenizer.decode(train_dataset['input_ids_previous_question'][1])
#tokenizer.decode(train_dataset['input_ids_'][1])
# Training
if args.do_train:
checkpoint = None
if args.resume_from_checkpoint is not None:
checkpoint = args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
logger.info(train_result)
# Remove teacher from the model before saving
if args.lambda_kl > 0:
del trainer.model.cross_encoder
trainer.save_model() # Saves the tokenizer too for easy upload
metrics = train_result.metrics
max_train_samples = (
args.max_train_samples if args.max_train_samples is not None else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
logger.info(metrics)
# Evaluation
if args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate()
max_eval_samples = args.max_eval_samples if args.max_eval_samples is not None else len(eval_dataset)
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
logger.info(metrics)
# Prediction
if args.do_predict:
logger.info("*** Predict ***")
results = trainer.predict(predict_dataset, predict_examples)
metrics = results.metrics
max_predict_samples = (
args.max_predict_samples if args.max_predict_samples is not None else len(predict_dataset)
)
metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))
trainer.log_metrics("predict", metrics)
trainer.save_metrics("predict", metrics)
logger.info(metrics)
# Filter test
if args.do_filter_test:
thresholds = [float(th) for th in args.filter_threshold_list.split(',')]
logger.info(f'Testing following filter thresholds: {thresholds}')
results = []
for idx, threshold in enumerate(thresholds):
logger.info(f"Filter={threshold:.2f}")
metrics = trainer.evaluate(filter_threshold=threshold)
metrics['threshold'] = threshold
results.append(metrics)
logger.info("Filter Results")
for idx in range(len(results)):
out_str = ''
for key, val in results[idx].items():
out_str += f'{key}: {val:.2f} '
logger.info(out_str)
kwargs = {"finetuned_from": args.pretrained_name_or_path, "tasks": "question-answering"}
# if args.push_to_hub:
# trainer.push_to_hub(**kwargs)
# else:
# trainer.create_model_card(**kwargs)
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()