-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstandard.prelude
863 lines (658 loc) · 27.3 KB
/
standard.prelude
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
-- __________ __________ __________ __________ ________
-- / _______/ / ____ / / _______/ / _______/ / ____ \
-- / / _____ / / / / / /______ / /______ / /___/ /
-- / / /_ / / / / / / _______/ / _______/ / __ __/
-- / /___/ / / /___/ / / / / /______ / / \ \
-- /_________/ /_________/ /__/ /_________/ /__/ \__\
--
-- Functional programming environment, Version 2.30
-- Copyright Mark P Jones 1991-1994.
--
-- Standard prelude for use of overloaded values using type classes.
-- Based on the Haskell standard prelude version 1.2.
help = "press :? for a list of commands"
-- Operator precedence table: -----------------------------------------------
infixl 9 !!
infixr 9 .
infixr 8 ^
infixl 7 *
infix 7 /, `div`, `quot`, `rem`, `mod`
infixl 6 +, -
infix 5 \\
infixr 5 ++, :
infix 4 ==, /=, <, <=, >=, >
infix 4 `elem`, `notElem`
infixr 3 &&
infixr 2 ||
infixr 0 $
-- Standard combinators: ----------------------------------------------------
primitive strict "primStrict" :: (a -> b) -> a -> b
const :: a -> b -> a
const k x = k
id :: a -> a
id x = x
curry :: ((a,b) -> c) -> a -> b -> c
curry f a b = f (a,b)
uncurry :: (a -> b -> c) -> (a,b) -> c
uncurry f (a,b) = f a b
fst :: (a,b) -> a
fst (x,_) = x
snd :: (a,b) -> b
snd (_,y) = y
fst3 :: (a,b,c) -> a
fst3 (x,_,_) = x
snd3 :: (a,b,c) -> b
snd3 (_,x,_) = x
thd3 :: (a,b,c) -> c
thd3 (_,_,x) = x
(.) :: (b -> c) -> (a -> b) -> (a -> c)
(f . g) x = f (g x)
flip :: (a -> b -> c) -> b -> a -> c
flip f x y = f y x
($) :: (a -> b) -> a -> b -- pronounced as `apply' elsewhere
f $ x = f x
-- Boolean functions: -------------------------------------------------------
(&&), (||) :: Bool -> Bool -> Bool
False && x = False
True && x = x
False || x = x
True || x = True
not :: Bool -> Bool
not True = False
not False = True
and, or :: [Bool] -> Bool
and = foldr (&&) True
or = foldr (||) False
any, all :: (a -> Bool) -> [a] -> Bool
any p = or . map p
all p = and . map p
otherwise :: Bool
otherwise = True
-- Character functions: -----------------------------------------------------
primitive ord "primCharToInt" :: Char -> Int
primitive chr "primIntToChar" :: Int -> Char
isAscii, isControl, isPrint, isSpace :: Char -> Bool
isUpper, isLower, isAlpha, isDigit, isAlphanum :: Char -> Bool
isAscii c = ord c < 128
isControl c = c < ' ' || c == '\DEL'
isPrint c = c >= ' ' && c <= '~'
isSpace c = c == ' ' || c == '\t' || c == '\n' || c == '\r' ||
c == '\f' || c == '\v'
isUpper c = c >= 'A' && c <= 'Z'
isLower c = c >= 'a' && c <= 'z'
isAlpha c = isUpper c || isLower c
isDigit c = c >= '0' && c <= '9'
isAlphanum c = isAlpha c || isDigit c
toUpper, toLower :: Char -> Char
toUpper c | isLower c = chr (ord c - ord 'a' + ord 'A')
| otherwise = c
toLower c | isUpper c = chr (ord c - ord 'A' + ord 'a')
| otherwise = c
minChar, maxChar :: Char
minChar = chr 0
maxChar = chr 255
-- Standard type classes: ---------------------------------------------------
class Eq a where
(==), (/=) :: a -> a -> Bool
x /= y = not (x == y)
class Eq a => Ord a where
(<), (<=), (>), (>=) :: a -> a -> Bool
max, min :: a -> a -> a
x < y = x <= y && x /= y
x >= y = y <= x
x > y = y < x
max x y | x >= y = x
| y >= x = y
min x y | x <= y = x
| y <= x = y
class Ord a => Ix a where
range :: (a,a) -> [a]
index :: (a,a) -> a -> Int
inRange :: (a,a) -> a -> Bool
class Ord a => Enum a where
enumFrom :: a -> [a] -- [n..]
enumFromThen :: a -> a -> [a] -- [n,m..]
enumFromTo :: a -> a -> [a] -- [n..m]
enumFromThenTo :: a -> a -> a -> [a] -- [n,n'..m]
enumFromTo n m = takeWhile (m>=) (enumFrom n)
enumFromThenTo n n' m = takeWhile ((if n'>=n then (>=) else (<=)) m)
(enumFromThen n n')
class (Eq a, Text a) => Num a where -- simplified numeric class
(+), (-), (*), (/) :: a -> a -> a
negate :: a -> a
fromInteger :: Int -> a
-- Type class instances: ----------------------------------------------------
primitive primEqInt "primEqInt",
primLeInt "primLeInt" :: Int -> Int -> Bool
primitive primPlusInt "primPlusInt",
primMinusInt "primMinusInt",
primDivInt "primDivInt",
primMulInt "primMulInt" :: Int -> Int -> Int
primitive primNegInt "primNegInt" :: Int -> Int
instance Eq () where () == () = True
instance Ord () where () <= () = True
instance Eq Int where (==) = primEqInt
instance Ord Int where (<=) = primLeInt
instance Ix Int where
range (m,n) = [m..n]
index b@(m,n) i
| inRange b i = i - m
| otherwise = error "index out of range"
inRange (m,n) i = m <= i && i <= n
instance Enum Int where
enumFrom n = iterate (1+) n
enumFromThen n m = iterate ((m-n)+) n
instance Num Int where
(+) = primPlusInt
(-) = primMinusInt
(*) = primMulInt
(/) = primDivInt
negate = primNegInt
fromInteger x = x
{- PC version off -}
primitive primEqFloat "primEqFloat",
primLeFloat "primLeFloat" :: Float -> Float -> Bool
primitive primPlusFloat "primPlusFloat",
primMinusFloat "primMinusFloat",
primDivFloat "primDivFloat",
primMulFloat "primMulFloat" :: Float -> Float -> Float
primitive primNegFloat "primNegFloat" :: Float -> Float
primitive primIntToFloat "primIntToFloat" :: Int -> Float
instance Eq Float where (==) = primEqFloat
instance Ord Float where (<=) = primLeFloat
instance Enum Float where
enumFrom n = iterate (1.0+) n
enumFromThen n m = iterate ((m-n)+) n
instance Num Float where
(+) = primPlusFloat
(-) = primMinusFloat
(*) = primMulFloat
(/) = primDivFloat
negate = primNegFloat
fromInteger = primIntToFloat
primitive sin "primSinFloat", asin "primAsinFloat",
cos "primCosFloat", acos "primAcosFloat",
tan "primTanFloat", atan "primAtanFloat",
log "primLogFloat", log10 "primLog10Float",
exp "primExpFloat", sqrt "primSqrtFloat" :: Float -> Float
primitive atan2 "primAtan2Float" :: Float -> Float -> Float
primitive truncate "primFloatToInt" :: Float -> Int
pi :: Float
pi = 3.1415926535
{- PC version on -}
primitive primEqChar "primEqChar",
primLeChar "primLeChar" :: Char -> Char -> Bool
instance Eq Char where (==) = primEqChar -- c == d = ord c == ord d
instance Ord Char where (<=) = primLeChar -- c <= d = ord c <= ord d
instance Ix Char where
range (c,c') = [c..c']
index b@(m,n) i
| inRange b i = ord i - ord m
| otherwise = error "index out of range"
inRange (c,c') ci = ord c <= i && i <= ord c' where i = ord ci
instance Enum Char where
enumFrom c = map chr [ord c .. ord maxChar]
enumFromThen c c' = map chr [ord c, ord c' .. ord lastChar]
where lastChar = if c' < c then minChar else maxChar
instance Eq a => Eq [a] where
[] == [] = True
[] == (y:ys) = False
(x:xs) == [] = False
(x:xs) == (y:ys) = x==y && xs==ys
instance Ord a => Ord [a] where
[] <= _ = True
(_:_) <= [] = False
(x:xs) <= (y:ys) = x<y || (x==y && xs<=ys)
instance (Eq a, Eq b) => Eq (a,b) where
(x,y) == (u,v) = x==u && y==v
instance (Ord a, Ord b) => Ord (a,b) where
(x,y) <= (u,v) = x<u || (x==u && y<=v)
instance Eq Bool where
True == True = True
False == False = True
_ == _ = False
instance Ord Bool where
False <= x = True
True <= x = x
-- Standard numerical functions: --------------------------------------------
primitive div "primDivInt",
quot "primQuotInt",
rem "primRemInt",
mod "primModInt" :: Int -> Int -> Int
subtract :: Num a => a -> a -> a
subtract = flip (-)
even, odd :: Int -> Bool
even x = x `rem` 2 == 0
odd = not . even
gcd :: Int -> Int -> Int
gcd x y = gcd' (abs x) (abs y)
where gcd' x 0 = x
gcd' x y = gcd' y (x `rem` y)
lcm :: Int -> Int -> Int
lcm _ 0 = 0
lcm 0 _ = 0
lcm x y = abs ((x `quot` gcd x y) * y)
(^) :: Num a => a -> Int -> a
x ^ 0 = fromInteger 1
x ^ (n+1) = f x n x
where f _ 0 y = y
f x n y = g x n where
g x n | even n = g (x*x) (n`quot`2)
| otherwise = f x (n-1) (x*y)
abs :: (Num a, Ord a) => a -> a
abs x | x>=fromInteger 0 = x
| otherwise = -x
signum :: (Num a, Ord a) => a -> Int
signum x
| x==fromInteger 0 = 0
| x> fromInteger 0 = 1
| otherwise = -1
sum, product :: Num a => [a] -> a
sum = foldl' (+) (fromInteger 0)
product = foldl' (*) (fromInteger 1)
sums, products :: Num a => [a] -> [a]
sums = scanl (+) (fromInteger 0)
products = scanl (*) (fromInteger 1)
-- Standard list processing functions: --------------------------------------
head :: [a] -> a
head (x:_) = x
last :: [a] -> a
last [x] = x
last (_:xs) = last xs
tail :: [a] -> [a]
tail (_:xs) = xs
init :: [a] -> [a]
init [x] = []
init (x:xs) = x : init xs
(++) :: [a] -> [a] -> [a] -- append lists. Associative with
[] ++ ys = ys -- left and right identity [].
(x:xs) ++ ys = x:(xs++ys)
genericLength :: Num a => [b] -> a
genericLength = foldl' (\n _ -> n + fromInteger 1) (fromInteger 0)
length :: [a] -> Int -- calculate length of list
length = foldl' (\n _ -> n+1) 0
(!!) :: [a] -> Int -> a -- xs!!n selects the nth element of
(x:_) !! 0 = x -- the list xs (first element xs!!0)
(_:xs) !! (n+1) = xs !! n -- for any n < length xs.
iterate :: (a -> a) -> a -> [a] -- generate the infinite list
iterate f x = x : iterate f (f x) -- [x, f x, f (f x), ...
repeat :: a -> [a] -- generate the infinite list
repeat x = xs where xs = x:xs -- [x, x, x, x, ...
cycle :: [a] -> [a] -- generate the infinite list
cycle xs = xs' where xs'=xs++xs'-- xs ++ xs ++ xs ++ ...
copy :: Int -> a -> [a] -- make list of n copies of x
copy n x = take n xs where xs = x:xs
nub :: Eq a => [a] -> [a] -- remove duplicates from list
nub [] = []
nub (x:xs) = x : nub (filter (x/=) xs)
reverse :: [a] -> [a] -- reverse elements of list
reverse = foldl (flip (:)) []
elem, notElem :: Eq a => a -> [a] -> Bool
elem = any . (==) -- test for membership in list
notElem = all . (/=) -- test for non-membership
maximum, minimum :: Ord a => [a] -> a
maximum = foldl1 max -- max element in non-empty list
minimum = foldl1 min -- min element in non-empty list
concat :: [[a]] -> [a] -- concatenate list of lists
concat = foldr (++) []
transpose :: [[a]] -> [[a]] -- transpose list of lists
transpose = foldr
(\xs xss -> zipWith (:) xs (xss ++ repeat []))
[]
-- null provides a simple and efficient way of determining whether a given
-- list is empty, without using (==) and hence avoiding a constraint of the
-- form Eq [a].
null :: [a] -> Bool
null [] = True
null (_:_) = False
-- (\\) is used to remove the first occurrence of each element in the second
-- list from the first list. It is a kind of inverse of (++) in the sense
-- that (xs ++ ys) \\ xs = ys for any finite list xs of proper values xs.
(\\) :: Eq a => [a] -> [a] -> [a]
(\\) = foldl del
where [] `del` _ = []
(x:xs) `del` y
| x == y = xs
| otherwise = x : xs `del` y
-- map f xs applies the function f to each element of the list xs returning
-- the corresponding list of results. filter p xs returns the sublist of xs
-- containing those elements which satisfy the predicate p.
map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs
filter :: (a -> Bool) -> [a] -> [a]
filter _ [] = []
filter p (x:xs)
| p x = x : xs'
| otherwise = xs'
where xs' = filter p xs
-- Fold primitives: The foldl and scanl functions, variants foldl1 and
-- scanl1 for non-empty lists, and strict variants foldl' scanl' describe
-- common patterns of recursion over lists. Informally:
--
-- foldl f a [x1, x2, ..., xn] = f (...(f (f a x1) x2)...) xn
-- = (...((a `f` x1) `f` x2)...) `f` xn
-- etc...
--
-- The functions foldr, scanr and variants foldr1, scanr1 are duals of these
-- functions:
-- e.g. foldr f a xs = foldl (flip f) a (reverse xs) for finite lists xs.
foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs
foldl1 :: (a -> a -> a) -> [a] -> a
foldl1 f (x:xs) = foldl f x xs
foldl' :: (a -> b -> a) -> a -> [b] -> a
foldl' f a [] = a
foldl' f a (x:xs) = strict (foldl' f) (f a x) xs
scanl :: (a -> b -> a) -> a -> [b] -> [a]
scanl f q xs = q : (case xs of
[] -> []
x:xs -> scanl f (f q x) xs)
scanl1 :: (a -> a -> a) -> [a] -> [a]
scanl1 f (x:xs) = scanl f x xs
scanl' :: (a -> b -> a) -> a -> [b] -> [a]
scanl' f q xs = q : (case xs of
[] -> []
x:xs -> strict (scanl' f) (f q x) xs)
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)
foldr1 :: (a -> a -> a) -> [a] -> a
foldr1 f [x] = x
foldr1 f (x:xs) = f x (foldr1 f xs)
scanr :: (a -> b -> b) -> b -> [a] -> [b]
scanr f q0 [] = [q0]
scanr f q0 (x:xs) = f x q : qs
where qs@(q:_) = scanr f q0 xs
scanr1 :: (a -> a -> a) -> [a] -> [a]
scanr1 f [x] = [x]
scanr1 f (x:xs) = f x q : qs
where qs@(q:_) = scanr1 f xs
-- List breaking functions:
--
-- take n xs returns the first n elements of xs
-- drop n xs returns the remaining elements of xs
-- splitAt n xs = (take n xs, drop n xs)
--
-- takeWhile p xs returns the longest initial segment of xs whose
-- elements satisfy p
-- dropWhile p xs returns the remaining portion of the list
-- span p xs = (takeWhile p xs, dropWhile p xs)
--
-- takeUntil p xs returns the list of elements upto and including the
-- first element of xs which satisfies p
take :: Int -> [a] -> [a]
take 0 _ = []
take _ [] = []
take (n+1) (x:xs) = x : take n xs
drop :: Int -> [a] -> [a]
drop 0 xs = xs
drop _ [] = []
drop (n+1) (_:xs) = drop n xs
splitAt :: Int -> [a] -> ([a], [a])
splitAt 0 xs = ([],xs)
splitAt _ [] = ([],[])
splitAt (n+1) (x:xs) = (x:xs',xs'') where (xs',xs'') = splitAt n xs
takeWhile :: (a -> Bool) -> [a] -> [a]
takeWhile p [] = []
takeWhile p (x:xs)
| p x = x : takeWhile p xs
| otherwise = []
takeUntil :: (a -> Bool) -> [a] -> [a]
takeUntil p [] = []
takeUntil p (x:xs)
| p x = [x]
| otherwise = x : takeUntil p xs
dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p xs@(x:xs')
| p x = dropWhile p xs'
| otherwise = xs
span, break :: (a -> Bool) -> [a] -> ([a],[a])
span p [] = ([],[])
span p xs@(x:xs')
| p x = let (ys,zs) = span p xs' in (x:ys,zs)
| otherwise = ([],xs)
break p = span (not . p)
-- Text processing:
-- lines s returns the list of lines in the string s.
-- words s returns the list of words in the string s.
-- unlines ls joins the list of lines ls into a single string
-- with lines separated by newline characters.
-- unwords ws joins the list of words ws into a single string
-- with words separated by spaces.
lines :: String -> [String]
lines "" = []
lines s = l : (if null s' then [] else lines (tail s'))
where (l, s') = break ('\n'==) s
words :: String -> [String]
words s = case dropWhile isSpace s of
"" -> []
s' -> w : words s''
where (w,s'') = break isSpace s'
unlines :: [String] -> String
unlines = concat . map (\l -> l ++ "\n")
unwords :: [String] -> String
unwords [] = []
unwords ws = foldr1 (\w s -> w ++ ' ':s) ws
-- Merging and sorting lists:
merge :: Ord a => [a] -> [a] -> [a]
merge [] ys = ys
merge xs [] = xs
merge (x:xs) (y:ys)
| x <= y = x : merge xs (y:ys)
| otherwise = y : merge (x:xs) ys
sort :: Ord a => [a] -> [a]
sort = foldr insert []
insert :: Ord a => a -> [a] -> [a]
insert x [] = [x]
insert x (y:ys)
| x <= y = x:y:ys
| otherwise = y:insert x ys
qsort :: Ord a => [a] -> [a]
qsort [] = []
qsort (x:xs) = qsort [ u | u<-xs, u<x ] ++
[ x ] ++
qsort [ u | u<-xs, u>=x ]
-- zip and zipWith families of functions:
zip :: [a] -> [b] -> [(a,b)]
zip = zipWith (\a b -> (a,b))
zip3 :: [a] -> [b] -> [c] -> [(a,b,c)]
zip3 = zipWith3 (\a b c -> (a,b,c))
zip4 :: [a] -> [b] -> [c] -> [d] -> [(a,b,c,d)]
zip4 = zipWith4 (\a b c d -> (a,b,c,d))
zip5 :: [a] -> [b] -> [c] -> [d] -> [e] -> [(a,b,c,d,e)]
zip5 = zipWith5 (\a b c d e -> (a,b,c,d,e))
zip6 :: [a] -> [b] -> [c] -> [d] -> [e] -> [f] -> [(a,b,c,d,e,f)]
zip6 = zipWith6 (\a b c d e f -> (a,b,c,d,e,f))
zip7 :: [a] -> [b] -> [c] -> [d] -> [e] -> [f] -> [g] -> [(a,b,c,d,e,f,g)]
zip7 = zipWith7 (\a b c d e f g -> (a,b,c,d,e,f,g))
zipWith :: (a->b->c) -> [a]->[b]->[c]
zipWith z (a:as) (b:bs) = z a b : zipWith z as bs
zipWith _ _ _ = []
zipWith3 :: (a->b->c->d) -> [a]->[b]->[c]->[d]
zipWith3 z (a:as) (b:bs) (c:cs)
= z a b c : zipWith3 z as bs cs
zipWith3 _ _ _ _ = []
zipWith4 :: (a->b->c->d->e) -> [a]->[b]->[c]->[d]->[e]
zipWith4 z (a:as) (b:bs) (c:cs) (d:ds)
= z a b c d : zipWith4 z as bs cs ds
zipWith4 _ _ _ _ _ = []
zipWith5 :: (a->b->c->d->e->f) -> [a]->[b]->[c]->[d]->[e]->[f]
zipWith5 z (a:as) (b:bs) (c:cs) (d:ds) (e:es)
= z a b c d e : zipWith5 z as bs cs ds es
zipWith5 _ _ _ _ _ _ = []
zipWith6 :: (a->b->c->d->e->f->g)
-> [a]->[b]->[c]->[d]->[e]->[f]->[g]
zipWith6 z (a:as) (b:bs) (c:cs) (d:ds) (e:es) (f:fs)
= z a b c d e f : zipWith6 z as bs cs ds es fs
zipWith6 _ _ _ _ _ _ _ = []
zipWith7 :: (a->b->c->d->e->f->g->h)
-> [a]->[b]->[c]->[d]->[e]->[f]->[g]->[h]
zipWith7 z (a:as) (b:bs) (c:cs) (d:ds) (e:es) (f:fs) (g:gs)
= z a b c d e f g : zipWith7 z as bs cs ds es fs gs
zipWith7 _ _ _ _ _ _ _ _ = []
unzip :: [(a,b)] -> ([a],[b])
unzip = foldr (\(a,b) ~(as,bs) -> (a:as, b:bs)) ([], [])
-- Formatted output: --------------------------------------------------------
primitive primPrint "primPrint" :: Int -> a -> String -> String
show' :: a -> String
show' x = primPrint 0 x []
cjustify, ljustify, rjustify :: Int -> String -> String
cjustify n s = space halfm ++ s ++ space (m - halfm)
where m = n - length s
halfm = m `div` 2
ljustify n s = s ++ space (n - length s)
rjustify n s = space (n - length s) ++ s
space :: Int -> String
space n = copy n ' '
layn :: [String] -> String
layn = lay 1 where lay _ [] = []
lay n (x:xs) = rjustify 4 (show n) ++ ") "
++ x ++ "\n" ++ lay (n+1) xs
-- Miscellaneous: -----------------------------------------------------------
until :: (a -> Bool) -> (a -> a) -> a -> a
until p f x | p x = x
| otherwise = until p f (f x)
until' :: (a -> Bool) -> (a -> a) -> a -> [a]
until' p f = takeUntil p . iterate f
primitive error "primError" :: String -> a
undefined :: a
undefined | False = undefined
asTypeOf :: a -> a -> a
x `asTypeOf` _ = x
-- A trimmed down version of the Haskell Text class: ------------------------
type ShowS = String -> String
class Text a where
showsPrec :: Int -> a -> ShowS
showList :: [a] -> ShowS
showsPrec = primPrint
showList [] = showString "[]"
showList (x:xs) = showChar '[' . shows x . showl xs
where showl [] = showChar ']'
showl (x:xs) = showChar ',' . shows x . showl xs
shows :: Text a => a -> ShowS
shows = showsPrec 0
show :: Text a => a -> String
show x = shows x ""
showChar :: Char -> ShowS
showChar = (:)
showString :: String -> ShowS
showString = (++)
instance Text () where
showsPrec d () = showString "()"
instance Text Bool where
showsPrec d True = showString "True"
showsPrec d False = showString "False"
primitive primShowsInt "primShowsInt" :: Int -> Int -> String -> String
instance Text Int where showsPrec = primShowsInt
{- PC version off -}
primitive primShowsFloat "primShowsFloat" :: Int -> Float -> String -> String
instance Text Float where showsPrec = primShowsFloat
{- PC version on -}
instance Text Char where
showsPrec p c = showString [q, c, q] where q = '\''
showList cs = showChar '"' . showl cs
where showl "" = showChar '"'
showl ('"':cs) = showString "\\\"" . showl cs
showl (c:cs) = showChar c . showl cs
-- Haskell has showLitChar c . showl cs
instance Text a => Text [a] where
showsPrec p = showList
instance (Text a, Text b) => Text (a,b) where
showsPrec p (x,y) = showChar '(' . shows x . showChar ',' .
shows y . showChar ')'
-- I/O functions and definitions: -------------------------------------------
stdin = "stdin"
stdout = "stdout"
stderr = "stderr"
stdecho = "stdecho"
{- The Dialogue, Request, Response and IOError datatypes are now builtin:
data Request = -- file system requests:
ReadFile String
| WriteFile String String
| AppendFile String String
-- channel system requests:
| ReadChan String
| AppendChan String String
-- environment requests:
| Echo Bool
| GetArgs
| GetProgName
| GetEnv String
data Response = Success
| Str String
| Failure IOError
| StrList [String]
data IOError = WriteError String
| ReadError String
| SearchError String
| FormatError String
| OtherError String
type Dialogue = [Response] -> [Request]
-}
type SuccCont = Dialogue
type StrCont = String -> Dialogue
type StrListCont = [String] -> Dialogue
type FailCont = IOError -> Dialogue
done :: Dialogue
readFile :: String -> FailCont -> StrCont -> Dialogue
writeFile :: String -> String -> FailCont -> SuccCont -> Dialogue
appendFile :: String -> String -> FailCont -> SuccCont -> Dialogue
readChan :: String -> FailCont -> StrCont -> Dialogue
appendChan :: String -> String -> FailCont -> SuccCont -> Dialogue
echo :: Bool -> FailCont -> SuccCont -> Dialogue
getArgs :: FailCont -> StrListCont -> Dialogue
getProgName :: FailCont -> StrCont -> Dialogue
getEnv :: String -> FailCont -> StrCont -> Dialogue
done resps = []
readFile name fail succ resps =
(ReadFile name) : strDispatch fail succ resps
writeFile name contents fail succ resps =
(WriteFile name contents) : succDispatch fail succ resps
appendFile name contents fail succ resps =
(AppendFile name contents) : succDispatch fail succ resps
readChan name fail succ resps =
(ReadChan name) : strDispatch fail succ resps
appendChan name contents fail succ resps =
(AppendChan name contents) : succDispatch fail succ resps
echo bool fail succ resps =
(Echo bool) : succDispatch fail succ resps
getArgs fail succ resps =
GetArgs : strListDispatch fail succ resps
getProgName fail succ resps =
GetProgName : strDispatch fail succ resps
getEnv name fail succ resps =
(GetEnv name) : strDispatch fail succ resps
strDispatch fail succ (resp:resps) =
case resp of Str val -> succ val resps
Failure msg -> fail msg resps
succDispatch fail succ (resp:resps) =
case resp of Success -> succ resps
Failure msg -> fail msg resps
strListDispatch fail succ (resp:resps) =
case resp of StrList val -> succ val resps
Failure msg -> fail msg resps
abort :: FailCont
abort err = done
exit :: FailCont
exit err = appendChan stderr msg abort done
where msg = case err of ReadError s -> s
WriteError s -> s
SearchError s -> s
FormatError s -> s
OtherError s -> s
print :: Text a => a -> Dialogue
print x = appendChan stdout (show x) exit done
prints :: Text a => a -> String -> Dialogue
prints x s = appendChan stdout (shows x s) exit done
interact :: (String -> String) -> Dialogue
interact f = readChan stdin exit
(\x -> appendChan stdout (f x) exit done)
run :: (String -> String) -> Dialogue
run f = echo False exit (interact f)
primitive primFopen "primFopen" :: String -> a -> (String -> a) -> a
openfile :: String -> String
openfile f = primFopen f (error ("can't open file "++f)) id
-- End of Gofer standard prelude: --------------------------------------------