This repository has been archived by the owner on Oct 2, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_targets.Rmd
381 lines (301 loc) · 9.93 KB
/
_targets.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
---
title: "Target Markdown"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(collapse = TRUE, comment = "#>")
```
Target Markdown is a powerful R Markdown interface for reproducible
analysis pipelines, and the chapter at
<https://books.ropensci.org/targets/markdown.html> walks through it in
detail.
# Packages
The example requires several R packages that can be installed using the
remotes package:
```{r install-dependencies, eval=FALSE}
# These only need to be run outside of the UKBRAP
# install.packages("remotes")
# install.packages("renv")
# install.packages("targets")
# remotes::install_github("steno-aarhus/ukbAid")
# Everything should have been setup in the UKBRAP if ukbAid
# instructions were followed.
renv::restore()
```
# Setup
Near the top of the document, you may also wish to remove the
`_targets_r` directory previously written by non-interactive runs of the
report. Otherwise, your pipeline may contain superfluous targets.
```{r}
library(targets)
tar_unscript()
# Use this function to delete target's entire cache. Is a hard reset.
# tar_destroy()
```
# Globals
We first define some global options/functions common to all targets.
```{targets target-globals, tar_globals = TRUE}
set.seed(65)
options(tidyverse.quiet = TRUE)
library(tidyverse)
pkgs_to_load <- desc::desc_get_deps() %>%
filter(type == "Imports") %>%
pull(package)
# Get and set packages that pipeline depends on.
targets::tar_option_set(packages = pkgs_to_load)
here::here("R") %>%
fs::dir_ls(glob = "*.R") %>%
walk(source)
```
# Targets
## Project setup
```{targets download_project_data}
tar_target(
name = download_project_data,
command = ukbAid::download_project_data(),
format = "file"
)
```
## Pre-processing outside of targets
Initial processing of the UK Biobank to get into the necessary state
needed for this project. The end goal is to save the dataset at the
storage location.
```{r, eval=FALSE}
# Then run the wrangling function:
# wrangled_data <- ukb_wrangle_and_save(ukb_data_raw)
# But really, this function is used to save the dataset to its location:
# ukb_wrangle_and_save(ukb_data_raw, .save = TRUE)
```
## Processing within targets
Next we need to process the dataset for exact use in this project and
load it into the environment. We don't want to save this dataset, since
it is already in its remote location.
```{targets data_file_path}
tar_target(
name = data_file_path,
command = check_if_data_exists(),
format = "file"
)
```
Let's import the data from the storage location, without removing
exclusions.
```{targets project-data-pre-exclusions}
tar_target(
name = project_data_pre_exclusions,
command = ukb_import_project_data(data_file_path)
)
```
Now we can remove participants based on the exclusion criteria and other
removals that we found during exploration.
```{targets project-data}
tar_target(
name = project_data,
command = ukb_remove_exclusions(project_data_pre_exclusions)
)
```
## Basic descriptive characteristics
Since we want to create a CONSORT diagram of who we removed from the
original UK Biobank dataset, we send the consort data into the plot
function.
TODO: Exclude also those with T2DM and HbA1c above 48?
```{targets consort-diagram}
tar_target(
name = consort_diagram,
command = project_data_pre_exclusions %>%
ukb_remove_exclusions(for_consort_diagram = TRUE) %>%
plot_consort_diagram(save_plot = TRUE),
format = "file"
)
```
We'll run some descriptive statistics on the full data as well as by
sex. This will be saved into the `data/` folder.
```{targets descriptive-statistics}
tar_target(
name = descriptive_statistics,
command = analysis_descriptive_statistics(project_data),
format = "file"
)
```
TODO: Plots of exposures and outcomes, total and by gender
```{r}
plot_data_prep <- project_data %>%
select(contains("height"), contains("leg"), sex, mtb_glycated_haemoglobin_hba1c) %>%
mutate(leg_height_ratio = leg_height_ratio * 100) %>%
pivot_longer(-sex) %>%
filter(name == "leg_height_ratio")
# Maybe use https://www.rdocumentation.org/packages/ggcorrplot/versions/0.1.1/topics/ggcorrplot
ggplot(plot_data_prep, aes(x = value, y = ..count..)) +
geom_histogram(data = select(plot_data_prep, -sex), aes(x = value, fill = "all"), bins = 20) +
geom_histogram(data = plot_data_prep, aes(x = value, fill = sex), bins = 20) +
# ggridges::geom_density_line(
# data = select(plot_data_prep, -sex), aes(fill = "all"),
# color = "transparent", adjust = 1/2
# ) +
# ggridges::geom_density_line(aes(fill = sex), bw = 2, adjust = 1/2, color = "transparent") +
# scale_x_continuous(limits = c(0, 75), name = "passenger age (years)", expand = c(0, 0)) +
# scale_y_continuous(limits = c(0, 26), name = "scaled density", expand = c(0, 0)) +
scale_fill_manual(
values = c("#b3b3b3a0", "#D55E00", "#0072B2"),
breaks = c("all", "Male", "Female"),
labels = c("all", "Male ", "Female"),
name = NULL,
guide = guide_legend(direction = "horizontal")
) +
coord_cartesian(clip = "off") +
facet_grid(cols = vars(sex)) +
theme_minimal() +
theme(
axis.line.x = element_blank(),
strip.text = element_text(size = 14, margin = margin(0, 0, 0.2, 0, "cm")),
legend.position = "bottom",
legend.justification = "right",
legend.margin = margin(4.5, 0, 1.5, 0, "pt"),
legend.spacing.x = grid::unit(4.5, "pt"),
legend.spacing.y = grid::unit(0, "pt"),
legend.box.spacing = grid::unit(0, "cm"),
)
# labeller = labeller(sex = function(sex) paste(sex, "passengers")))
```
TODO: Plot of all metabolic variables (distributions?) (Use function
from above)
```{r}
project_data %>%
select(starts_with("mtb") -mtb_glycated_haemoglobin_hba1c)
```
TODO: Correlation heatmap of metabolic variables
```{r}
cors <- function(data) {
correlation_matrix <- Hmisc::rcorr(as.matrix(data))
Mdf <- map(M, ~ data.frame(.x))
return(Mdf)
}
formatted_cors <- function(df) {
cors(df) %>%
map( ~ rownames_to_column(.x, var = "measure1")) %>%
map( ~ pivot_longer(.x, -measure1, "measure2")) %>%
bind_rows(.id = "id") %>%
pivot_wider(names_from = id, values_from = value) %>%
mutate(
sig_p = ifelse(P < .05, T, F),
p_if_sig = ifelse(P < .05, P, NA),
r_if_sig = ifelse(P < .05, r, NA)
)
}
formatted_cors(mtcars) %>%
ggplot(aes(
measure1,
measure2,
fill = r,
label = round(r_if_sig, 2)
)) +
geom_tile() +
labs(
x = NULL,
y = NULL,
fill = "Pearson's\nCorrelation",
title = "Correlations in Mtcars",
subtitle = "Only significant Pearson's correlation coefficients shown"
) +
scale_fill_gradient2(
mid = "#FBFEF9",
low = "#0C6291",
high = "#A63446",
limits = c(-1, 1)
) +
geom_text() +
theme_classic() +
scale_x_discrete(expand = c(0, 0)) +
scale_y_discrete(expand = c(0, 0)) +
theme(text = element_text(family = "Roboto"))
corr_results <- project_data %>%
select(starts_with("mtb"), -mtb_glycated_haemoglobin_hba1c) %>%
correlation::correlation(redundant = TRUE, p_adjust = "fdr")
# corr_results %>%
# correlation::cor_lower() %>%
```
## Processing for NetCoupler
There are some things we need to process for NetCoupler to work
effectively. Plus some data is largely missing, so we're removing those
columns. Then we do an initial split to have a training set and an
(eventual) testing set.
```{targets project-data-for-nc}
tar_target(
name = project_data_for_nc,
command = ukb_wrangle_for_nc(project_data)
)
```
While we do an initial split of the dataset, we also want to create some
cross-validation splits to 1) make it easier for NetCoupler to run on
the full dataset and 2) to aggregate the results across the splits to
hopefully get a better estimate of the network and modeling.
```{targets project-data-for-nc-cv}
tar_target(
name = project_data_for_nc_cv,
command = project_data_for_nc %>%
rsample::training() %>%
create_cv_splits()
)
```
```{r playground}
library(tidyverse)
testing_sampling <- project_data_for_nc %>%
rsample::training() %>%
create_cv_splits()
testing_network <- testing_sampling %>%
generate_network_results()
str()
```
Next is to set up the
TODO: Make DAG of underlying causal relationships (in relation to
confounders)
- Update confounders based on Christina's paper
- Smoking? Physical activity? Ethnic background, education,
income, anthropometrics?
- Make DAG.
## NetCoupler analysis
```{targets network-results}
tar_target(
name = network_results,
# Generate network results as rda file in data/
command = generate_network_results(project_data_for_nc_cv$splits),
format = "file"
)
```
TODO:
- Network results by sex/gender
- Exposure and outcome link results by sex/gender
- (In manuscript Rmd instead of targets?) Plot of network results by
sex/gender as well as total.
- (In manuscript Rmd instead of targets?) Plot of linkage results by
sex/gender as well as total.
- List of variables and their meta data (from UK Biobank)
And eventually make the manuscript:
```{r}
# tar_render(report, "report.Rmd")
```
# Pipeline
If you ran all the `{targets}` chunks in non-interactive mode, then your
R scripts are set up to run the pipeline.
```{r}
tar_make()
# Don't need or want the project data in the target cache.
tar_delete(starts_with("project_data"))
```
# Output
You can retrieve results from the `_targets/` data store using
`tar_read()` or `tar_load()`.
```{r, message = FALSE}
library(biglm)
tar_read(fit)
```
```{r}
tar_read(hist)
```
The `targets` dependency graph helps your readers understand the steps
of your pipeline at a high level.
```{r}
tar_visnetwork()
```
At this point, you can go back and run `{targets}` chunks in interactive
mode without interfering with the code or data of the non-interactive
pipeline.