-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathmath.lua
333 lines (299 loc) · 11 KB
/
math.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
--------------------------------------------------------------------------------
-- Special math functions module.
--
-- Copyright (C) 2011-2016 Stefano Peluchetti. All rights reserved.
--------------------------------------------------------------------------------
local ffi = require "ffi"
local bit = require "bit"
local xsys = require "xsys"
-- Cache all builtin math functions.
local
abs, acos, asin, atan, atan2, ceil, cos, cosh, deg, exp, floor, fmod, frexp,
huge, ldexp, log, log10, max, min, modf, pi, pow, rad, random, randomseed, sin,
sinh, sqrt, tan, tanh
= xsys.from(math, [[
abs, acos, asin, atan, atan2, ceil, cos, cosh, deg, exp, floor, fmod, frexp,
huge, ldexp, log, log10, max, min, modf, pi, pow, rad, random, randomseed, sin,
sinh, sqrt, tan, tanh
]])
local type = type
-- Step-wise functions ---------------------------------------------------------
-- Halfway cases are rounded away from zero, regardless of the current rounding
-- direction.
local function round(x)
return x < 0.0 and ceil(x - 0.5) or floor(x + 0.5)
end
local function step(x) -- 1 if x >= 0, 0 otherwise.
return max(0, min(floor(x) + 1, 1))
end
local function sign(x) -- 1 if x >= 0, -1 otherwise.
return -1 + step(x)*2
end
-- Special math functions ------------------------------------------------------
-- From Marsaglia, "Evaluating the Normal Distribution"
-- http://www.jstatsoft.org/v11/a05/paper
-- around 15 digits of absolute precision.
local function phi(x)
-- Ensure 0 <= phi(x) <= 1 :
if x <= -8 then
return 0
elseif x >= 8 then
return 1
else
local s, b, q = x, x, x^2
for i=3,1/0,2 do
b = b*q/i
local t = s
s = t + b
if s == t then break end
end
return 0.5 + s*exp(-0.5*q - 0.91893853320467274178)
end
end
-- Inverse cdf for sampling based on Peter John Acklam research, see:
-- http://home.online.no/~pjacklam/notes/invnorm/ .
-- Maximum relative error of 1.15E-9 and machine accuracy with refinement.
-- In iphifast domain must be (0, 1) extremes excluded.
local iphifast, iphi
do
local a = ffi.new("double[7]", { 0,
-3.969683028665376e+01,
2.209460984245205e+02,
-2.759285104469687e+02,
1.383577518672690e+02,
-3.066479806614716e+01,
2.506628277459239e+00 })
local b = ffi.new("double[6]", { 0,
-5.447609879822406e+01,
1.615858368580409e+02,
-1.556989798598866e+02,
6.680131188771972e+01,
-1.328068155288572e+01 })
local c = ffi.new("double[7]", { 0,
-7.784894002430293e-03,
-3.223964580411365e-01,
-2.400758277161838e+00,
-2.549732539343734e+00,
4.374664141464968e+00,
2.938163982698783e+00 })
local d = ffi.new("double[5]", { 0,
7.784695709041462e-03,
3.224671290700398e-01,
2.445134137142996e+00,
3.754408661907416e+00 })
-- PERF: just two branches, central with high prob.
iphifast = function(p)
-- Rational approximation for central region:
if abs(p - 0.5) < 0.47575 then -- 95.14% of cases if p ~ U(0, 1).
local q = p - 0.5
local r = q^2
return (((((a[1]*r+a[2])*r+a[3])*r+a[4])*r+a[5])*r+a[6])*q /
(((((b[1]*r+b[2])*r+b[3])*r+b[4])*r+b[5])*r+1)
-- Rational approximation for the two ends:
else
local iu = ceil(p - 0.97575) -- 1 if p > 0.97575 (upper).
local z = (1 - iu)*p + iu*(1 - p) -- p if lower, (1 - p) if upper.
local sign = 1 - 2*iu -- 1 if lower, -1 if upper.
local q = sqrt(-2*log(z))
return sign*(((((c[1]*q+c[2])*q+c[3])*q+c[4])*q+c[5])*q+c[6]) /
((((d[1]*q+d[2])*q+d[3])*q+d[4])*q+1)
end
end
iphi = function(p)
if p <= 0 then
return -1/0
elseif p >=1 then
return 1/0
else
local x = iphifast(p)
local e = phi(x) - p
local u = e*sqrt(2*pi)*exp(x^2/2)
return x - u/(1 + x*u/2)
end
end
end
local gamma, loggamma
do
-- r(10).
local gamma_r10 = 10.900511
-- dk[0], ..., dk[10].
local gamma_dk = ffi.new("double[11]",
2.48574089138753565546e-5,
1.05142378581721974210,
-3.45687097222016235469,
4.51227709466894823700,
-2.98285225323576655721,
1.05639711577126713077,
-1.95428773191645869583e-1,
1.70970543404441224307e-2,
-5.71926117404305781283e-4,
4.63399473359905636708e-6,
-2.71994908488607703910e-9
)
local gamma_c = 2*sqrt(exp(1)/pi)
-- Lanczos approximation, see:
-- Pugh[2004]: AN ANALYSIS OF THE LANCZOS GAMMA APPROXIMATION
-- http://bh0.physics.ubc.ca/People/matt/Doc/ThesesOthers/Phd/pugh.pdf
-- pag 116 for optimal formula and coefficients. Theoretical accuracy of
-- 16 digits is likely in practice to be around 14.
-- Domain: R except 0 and negative integers.
gamma = function(z)
-- Reflection formula to handle negative z plane.
-- Better to branch at z < 0 as some use cases focus on z >= 0 only.
if z < 0 then
return pi/(sin(pi*z)*gamma(1 - z))
end
local sum = gamma_dk[0]
sum = sum + gamma_dk[1]/(z + 0)
sum = sum + gamma_dk[2]/(z + 1)
sum = sum + gamma_dk[3]/(z + 2)
sum = sum + gamma_dk[4]/(z + 3)
sum = sum + gamma_dk[5]/(z + 4)
sum = sum + gamma_dk[6]/(z + 5)
sum = sum + gamma_dk[7]/(z + 6)
sum = sum + gamma_dk[8]/(z + 7)
sum = sum + gamma_dk[9]/(z + 8)
sum = sum + gamma_dk[10]/(z + 9)
return gamma_c*((z + gamma_r10 - 0.5)/exp(1))^(z - 0.5)*sum
end
-- Returns log(abs(gamma(z))).
-- Domain: R except 0 and negative integers.
loggamma = function(z)
if z < 0 then
return log(pi) - log(abs(sin(pi*z))) - loggamma(1 - z)
end
local sum = gamma_dk[0]
sum = sum + gamma_dk[1]/(z + 0)
sum = sum + gamma_dk[2]/(z + 1)
sum = sum + gamma_dk[3]/(z + 2)
sum = sum + gamma_dk[4]/(z + 3)
sum = sum + gamma_dk[5]/(z + 4)
sum = sum + gamma_dk[6]/(z + 5)
sum = sum + gamma_dk[7]/(z + 6)
sum = sum + gamma_dk[8]/(z + 7)
sum = sum + gamma_dk[9]/(z + 8)
sum = sum + gamma_dk[10]/(z + 9)
-- For z >= 0 gamma function is positive, no abs() required.
return log(gamma_c) + (z - 0.5)*log(z + gamma_r10 - 0.5)
- (z - 0.5) + log(sum)
end
end
-- Domain: a > 0 and b > 0.
local function logbeta(a, b)
if a <= 0 or b <= 0 then return 0/0 end
return loggamma(a) + loggamma(b) - loggamma(a + b)
end
-- Domain: a > 0 and b > 0.
local function beta(a, b)
return exp(logbeta(a, b))
end
-- Support for generic arguments -----------------------------------------------
local function recmax(x, y, ...)
return y and recmax(
type(x) ~= "number" and x:max(y) or (type(y) ~= "number" and y.max(x, y) or
max(x, y)), ...) or x
end
local function recmin(x, y, ...)
return y and recmin(
type(x) ~= "number" and x:min(y) or (type(y) ~= "number" and y.min(x, y) or
min(x, y)), ...) or x
end
local disp2 = {
atan2 = function(x, y)
return type(x) ~= "number" and x:atan2(y)
or (type(y) ~= "number" and y.atan2(x, y) or atan2(x, y))
end,
fmod = function(x, y)
return type(x) ~= "number" and x:fmod(y)
or (type(y) ~= "number" and y.fmod(x, y) or fmod(x, y))
end,
ldexp = function(x, y)
return type(x) ~= "number" and x:ldexp(y)
or (type(y) ~= "number" and y.ldexp(x, y) or ldexp(x, y))
end,
pow = function(x, y)
return type(x) ~= "number" and x:pow(y)
or (type(y) ~= "number" and y.pow(x, y) or pow(x, y))
end,
beta = function(x, y)
return type(x) ~= "number" and x:beta(y)
or (type(y) ~= "number" and y.beta(x, y) or beta(x, y))
end,
logbeta = function(x, y)
return type(x) ~= "number" and x:logbeta(y)
or (type(y) ~= "number" and y.logbeta(x, y) or logbeta(x, y))
end,
}
local generic = {
-- Constants:
pi = pi,
huge = huge,
-- Random numbers:
random = random,
randomseed = randomseed,
-- Generic dispatch based on one variable:
abs = function(x) return type(x) == "number" and abs(x) or x:abs() end,
acos = function(x) return type(x) == "number" and acos(x) or x:acos() end,
asin = function(x) return type(x) == "number" and asin(x) or x:asin() end,
atan = function(x) return type(x) == "number" and atan(x) or x:atan() end,
ceil = function(x) return type(x) == "number" and ceil(x) or x:ceil() end,
cos = function(x) return type(x) == "number" and cos(x) or x:cos() end,
cosh = function(x) return type(x) == "number" and cosh(x) or x:cosh() end,
deg = function(x) return type(x) == "number" and deg(x) or x:deg() end,
exp = function(x) return type(x) == "number" and exp(x) or x:exp() end,
floor = function(x) return type(x) == "number" and floor(x) or x:floor() end,
frexp = function(x) return type(x) == "number" and frexp(x) or x:frexp() end,
log = function(x) return type(x) == "number" and log(x) or x:log() end,
log10 = function(x) return type(x) == "number" and log10(x) or x:log10() end,
modf = function(x) return type(x) == "number" and modf(x) or x:modf() end,
rad = function(x) return type(x) == "number" and rad(x) or x:rad() end,
sin = function(x) return type(x) == "number" and sin(x) or x:sin() end,
sinh = function(x) return type(x) == "number" and sinh(x) or x:sinh() end,
sqrt = function(x) return type(x) == "number" and sqrt(x) or x:sqrt() end,
tan = function(x) return type(x) == "number" and tan(x) or x:tan() end,
tanh = function(x) return type(x) == "number" and tanh(x) or x:tanh() end,
-- Generic dispatch based on two variables:
atan2 = disp2.atan2,
fmod = disp2.fmod,
ldexp = disp2.ldexp,
pow = disp2.pow,
-- Special dispatch for vararg max and min functions:
max = recmax,
min = recmin,
-- General dispatch based on one variable:
gamma = function(x) return type(x) == "number" and gamma(x) or
x:gamma() end,
iphi = function(x) return type(x) == "number" and iphi(x) or
x:iphi() end,
loggamma = function(x) return type(x) == "number" and loggamma(x) or
x:loggamma() end,
phi = function(x) return type(x) == "number" and phi(x) or
x:phi() end,
round = function(x) return type(x) == "number" and round(x) or
x:round() end,
sign = function(x) return type(x) == "number" and sign(x) or
x:sign() end,
step = function(x) return type(x) == "number" and step(x) or
x:step() end,
-- Generic dispatch based on two variables:
beta = disp2.beta,
logbeta = disp2.logbeta,
-- Note: no generic dispatch for private functions:
_iphifast = iphifast,
}
--------------------------------------------------------------------------------
local M = xsys.table.union(math, {
generic = generic,
round = round,
step = step,
sign = sign,
phi = phi,
iphi = iphi,
gamma = gamma,
loggamma = loggamma,
logbeta = logbeta,
beta = beta,
_iphifast = iphifast,
})
M.generic.std = M -- Gives access to builtin functions.
return M