-
Notifications
You must be signed in to change notification settings - Fork 567
/
Copy pathpartSix.py
147 lines (111 loc) · 4.66 KB
/
partSix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# Neural Networks Demystified
# Part 6: Training
#
# Supporting code for short YouTube series on artificial neural networks.
#
# Stephen Welch
# @stephencwelch
## ----------------------- Part 1 ---------------------------- ##
import numpy as np
# X = (hours sleeping, hours studying), y = Score on test
X = np.array(([3,5], [5,1], [10,2]), dtype=float)
y = np.array(([75], [82], [93]), dtype=float)
# Normalize
X = X/np.amax(X, axis=0)
y = y/100 #Max test score is 100
## ----------------------- Part 5 ---------------------------- ##
class Neural_Network(object):
def __init__(self):
#Define Hyperparameters
self.inputLayerSize = 2
self.outputLayerSize = 1
self.hiddenLayerSize = 3
#Weights (parameters)
self.W1 = np.random.randn(self.inputLayerSize,self.hiddenLayerSize)
self.W2 = np.random.randn(self.hiddenLayerSize,self.outputLayerSize)
def forward(self, X):
#Propogate inputs though network
self.z2 = np.dot(X, self.W1)
self.a2 = self.sigmoid(self.z2)
self.z3 = np.dot(self.a2, self.W2)
yHat = self.sigmoid(self.z3)
return yHat
def sigmoid(self, z):
#Apply sigmoid activation function to scalar, vector, or matrix
return 1/(1+np.exp(-z))
def sigmoidPrime(self,z):
#Gradient of sigmoid
return np.exp(-z)/((1+np.exp(-z))**2)
def costFunction(self, X, y):
#Compute cost for given X,y, use weights already stored in class.
self.yHat = self.forward(X)
J = 0.5*sum((y-self.yHat)**2)
return J
def costFunctionPrime(self, X, y):
#Compute derivative with respect to W and W2 for a given X and y:
self.yHat = self.forward(X)
delta3 = np.multiply(-(y-self.yHat), self.sigmoidPrime(self.z3))
dJdW2 = np.dot(self.a2.T, delta3)
delta2 = np.dot(delta3, self.W2.T)*self.sigmoidPrime(self.z2)
dJdW1 = np.dot(X.T, delta2)
return dJdW1, dJdW2
#Helper Functions for interacting with other classes:
def getParams(self):
#Get W1 and W2 unrolled into vector:
params = np.concatenate((self.W1.ravel(), self.W2.ravel()))
return params
def setParams(self, params):
#Set W1 and W2 using single paramater vector.
W1_start = 0
W1_end = self.hiddenLayerSize * self.inputLayerSize
self.W1 = np.reshape(params[W1_start:W1_end], (self.inputLayerSize , self.hiddenLayerSize))
W2_end = W1_end + self.hiddenLayerSize*self.outputLayerSize
self.W2 = np.reshape(params[W1_end:W2_end], (self.hiddenLayerSize, self.outputLayerSize))
def computeGradients(self, X, y):
dJdW1, dJdW2 = self.costFunctionPrime(X, y)
return np.concatenate((dJdW1.ravel(), dJdW2.ravel()))
def computeNumericalGradient(N, X, y):
paramsInitial = N.getParams()
numgrad = np.zeros(paramsInitial.shape)
perturb = np.zeros(paramsInitial.shape)
e = 1e-4
for p in range(len(paramsInitial)):
#Set perturbation vector
perturb[p] = e
N.setParams(paramsInitial + perturb)
loss2 = N.costFunction(X, y)
N.setParams(paramsInitial - perturb)
loss1 = N.costFunction(X, y)
#Compute Numerical Gradient
numgrad[p] = (loss2 - loss1) / (2*e)
#Return the value we changed to zero:
perturb[p] = 0
#Return Params to original value:
N.setParams(paramsInitial)
return numgrad
## ----------------------- Part 6 ---------------------------- ##
from scipy import optimize
class trainer(object):
def __init__(self, N):
#Make Local reference to network:
self.N = N
def callbackF(self, params):
self.N.setParams(params)
self.J.append(self.N.costFunction(self.X, self.y))
def costFunctionWrapper(self, params, X, y):
self.N.setParams(params)
cost = self.N.costFunction(X, y)
grad = self.N.computeGradients(X,y)
return cost, grad
def train(self, X, y):
#Make an internal variable for the callback function:
self.X = X
self.y = y
#Make empty list to store costs:
self.J = []
params0 = self.N.getParams()
options = {'maxiter': 200, 'disp' : True}
_res = optimize.minimize(self.costFunctionWrapper, params0, jac=True, method='BFGS', \
args=(X, y), options=options, callback=self.callbackF)
self.N.setParams(_res.x)
self.optimizationResults = _res