forked from mamei16/LLM_Web_search
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlangchain_websearch.py
210 lines (181 loc) · 10.3 KB
/
langchain_websearch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import re
import asyncio
import warnings
import logging
import aiohttp
import requests
from bs4 import BeautifulSoup
from langchain.retrievers.document_compressors import DocumentCompressorPipeline
from langchain.retrievers.ensemble import EnsembleRetriever
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.retrievers.document_compressors.embeddings_filter import EmbeddingsFilter
from langchain.retrievers import ContextualCompressionRetriever
from langchain.schema import Document
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.document_transformers import EmbeddingsRedundantFilter
from langchain_community.retrievers import BM25Retriever
from transformers import AutoTokenizer, AutoModelForMaskedLM
import optimum.bettertransformer.transformation
try:
from qdrant_client import QdrantClient, models
except ImportError:
qrant_client = None
from .qdrant_retriever import MyQdrantSparseVectorRetriever
from .semantic_chunker import BoundedSemanticChunker
class LangchainCompressor:
def __init__(self, device="cuda", num_results: int = 5, similarity_threshold: float = 0.5, chunk_size: int = 500,
ensemble_weighting: float = 0.5, splade_batch_size: int = 2, keyword_retriever: str = "bm25",
model_cache_dir: str = None, chunking_method: str = "character-based",
chunker_breakpoint_threshold_amount: int = 10):
self.device = device
self.embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2", model_kwargs={"device": device},
cache_folder=model_cache_dir)
if keyword_retriever == "splade":
if "QdrantClient" not in globals():
raise ImportError("Package qrant_client is missing. Please install it using 'pip install qdrant-client")
self.splade_doc_tokenizer = AutoTokenizer.from_pretrained("naver/efficient-splade-VI-BT-large-doc",
cache_dir=model_cache_dir)
self.splade_doc_model = AutoModelForMaskedLM.from_pretrained("naver/efficient-splade-VI-BT-large-doc",
cache_dir=model_cache_dir).to(self.device)
self.splade_query_tokenizer = AutoTokenizer.from_pretrained("naver/efficient-splade-VI-BT-large-query",
cache_dir=model_cache_dir)
self.splade_query_model = AutoModelForMaskedLM.from_pretrained("naver/efficient-splade-VI-BT-large-query",
cache_dir=model_cache_dir).to(self.device)
optimum_logger = optimum.bettertransformer.transformation.logger
original_log_level = optimum_logger.level
# Set the level to 'ERROR' to ignore "The BetterTransformer padding during training warning"
optimum_logger.setLevel(logging.ERROR)
self.splade_doc_model.to_bettertransformer()
self.splade_query_model.to_bettertransformer()
optimum_logger.setLevel(original_log_level)
self.splade_batch_size = splade_batch_size
self.spaces_regex = re.compile(r" {3,}")
self.num_results = num_results
self.similarity_threshold = similarity_threshold
self.chunking_method = chunking_method
self.chunk_size = chunk_size
self.chunker_breakpoint_threshold_amount = chunker_breakpoint_threshold_amount
self.ensemble_weighting = ensemble_weighting
self.keyword_retriever = keyword_retriever
def preprocess_text(self, text: str) -> str:
text = text.replace("\n", " \n")
text = self.spaces_regex.sub(" ", text)
text = text.strip()
return text
def retrieve_documents(self, query: str, url_list: list[str]) -> list[Document]:
yield "Downloading webpages..."
html_url_tupls = zip(asyncio.run(async_fetch_urls(url_list)), url_list)
html_url_tupls = [(content, url) for content, url in html_url_tupls if content is not None]
if not html_url_tupls:
return []
documents = [html_to_plaintext_doc(html, url) for html, url in html_url_tupls]
if self.chunking_method == "semantic":
text_splitter = BoundedSemanticChunker(self.embeddings, breakpoint_threshold_type="percentile",
breakpoint_threshold_amount=self.chunker_breakpoint_threshold_amount,
max_chunk_size=self.chunk_size)
else:
text_splitter = RecursiveCharacterTextSplitter(chunk_size=self.chunk_size, chunk_overlap=10,
separators=["\n\n", "\n", ".", ", ", " ", ""])
yield "Chunking page texts..."
split_docs = text_splitter.split_documents(documents)
yield "Retrieving relevant results..."
# filtered_docs = pipeline_compressor.compress_documents(documents, query)
faiss_retriever = FAISS.from_documents(split_docs, self.embeddings).as_retriever(
search_kwargs={"k": self.num_results}
)
# The sparse keyword retriever is good at finding relevant documents based on keywords,
# while the dense retriever is good at finding relevant documents based on semantic similarity.
if self.keyword_retriever == "bm25":
keyword_retriever = BM25Retriever.from_documents(split_docs, preprocess_func=self.preprocess_text)
keyword_retriever.k = self.num_results
elif self.keyword_retriever == "splade":
client = QdrantClient(location=":memory:")
collection_name = "sparse_collection"
vector_name = "sparse_vector"
client.create_collection(
collection_name,
vectors_config={},
sparse_vectors_config={
vector_name: models.SparseVectorParams(
index=models.SparseIndexParams(
on_disk=False,
)
)
},
)
keyword_retriever = MyQdrantSparseVectorRetriever(
splade_doc_tokenizer=self.splade_doc_tokenizer,
splade_doc_model=self.splade_doc_model,
splade_query_tokenizer=self.splade_query_tokenizer,
splade_query_model=self.splade_query_model,
device=self.device,
client=client,
collection_name=collection_name,
sparse_vector_name=vector_name,
sparse_encoder=None,
batch_size=self.splade_batch_size,
k=self.num_results
)
keyword_retriever.add_documents(split_docs)
else:
raise ValueError("self.keyword_retriever must be one of ('bm25', 'splade')")
redundant_filter = EmbeddingsRedundantFilter(embeddings=self.embeddings)
embeddings_filter = EmbeddingsFilter(embeddings=self.embeddings, k=None,
similarity_threshold=self.similarity_threshold)
pipeline_compressor = DocumentCompressorPipeline(
transformers=[redundant_filter, embeddings_filter]
)
compression_retriever = ContextualCompressionRetriever(base_compressor=pipeline_compressor,
base_retriever=faiss_retriever)
ensemble_retriever = EnsembleRetriever(
retrievers=[compression_retriever, keyword_retriever],
weights=[self.ensemble_weighting, 1 - self.ensemble_weighting]
)
compressed_docs = ensemble_retriever.get_relevant_documents(query)
# Ensemble may return more than "num_results" results, so cut off excess ones
return compressed_docs[:self.num_results]
async def async_download_html(url, headers):
async with aiohttp.ClientSession(headers=headers, timeout=aiohttp.ClientTimeout(10)) as session:
try:
resp = await session.get(url)
return await resp.text()
except UnicodeDecodeError:
print(
f"LLM_Web_search | {url} generated an exception: Expected content type text/html. Got {resp.headers['Content-Type']}.")
except TimeoutError as exc:
print('LLM_Web_search | %r did not load in time' % url)
except Exception as exc:
print('LLM_Web_search | %r generated an exception: %s' % (url, exc))
return None
async def async_fetch_urls(urls):
headers = {"User-Agent": "Mozilla/5.0 (X11; Linux x86_64; rv:120.0) Gecko/20100101 Firefox/120.0",
"Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8",
"Accept-Language": "en-US,en;q=0.5"}
webpages = await asyncio.gather(*[(async_download_html(url, headers)) for url in urls])
return webpages
def docs_to_pretty_str(docs) -> str:
ret_str = ""
for i, doc in enumerate(docs):
ret_str += f"Result {i+1}:\n"
ret_str += f"{doc.page_content}\n"
ret_str += f"Source URL: {doc.metadata['source']}\n\n"
return ret_str
def download_html(url: str) -> bytes:
headers = {"User-Agent": "Mozilla/5.0 (X11; Linux x86_64; rv:120.0) Gecko/20100101 Firefox/120.0",
"Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8",
"Accept-Language": "en-US,en;q=0.5"}
response = requests.get(url, headers=headers, verify=True, timeout=8)
response.raise_for_status()
content_type = response.headers.get("Content-Type", "")
if not content_type.startswith("text/html"):
raise ValueError(f"Expected content type text/html. Got {content_type}.")
return response.content
def html_to_plaintext_doc(html_text: str or bytes, url: str) -> Document:
with warnings.catch_warnings(action="ignore"):
soup = BeautifulSoup(html_text, features="lxml")
for script in soup(["script", "style"]):
script.extract()
strings = '\n'.join([s.strip() for s in soup.stripped_strings])
webpage_document = Document(page_content=strings, metadata={"source": url})
return webpage_document