forked from mamei16/LLM_Web_search
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathllm_web_search.py
147 lines (129 loc) · 6.05 KB
/
llm_web_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import urllib
import requests
from requests.exceptions import JSONDecodeError
from duckduckgo_search import DDGS
from bs4 import BeautifulSoup
from langchain.schema import Document
from .langchain_websearch import docs_to_pretty_str, LangchainCompressor
class Generator:
"""Allows a generator method to return a final value after finishing
the generation. Credit: https://stackoverflow.com/a/34073559"""
def __init__(self, gen):
self.gen = gen
def __iter__(self):
self.value = yield from self.gen
return self.value
def dict_list_to_pretty_str(data: list[dict]) -> str:
ret_str = ""
if isinstance(data, dict):
data = [data]
if isinstance(data, list):
for i, d in enumerate(data):
ret_str += f"Result {i+1}\n"
ret_str += f"Title: {d['title']}\n"
ret_str += f"{d['body']}\n"
ret_str += f"Source URL: {d['href']}\n"
return ret_str
else:
raise ValueError("Input must be dict or list[dict]")
def search_duckduckgo(query: str, max_results: int, instant_answers: bool = True,
regular_search_queries: bool = True, get_website_content: bool = False) -> list[dict]:
query = query.strip("\"'")
with DDGS() as ddgs:
if instant_answers:
answer_list = ddgs.answers(query)
else:
answer_list = None
if answer_list:
answer_dict = answer_list[0]
answer_dict["title"] = query
answer_dict["body"] = answer_dict["text"]
answer_dict["href"] = answer_dict["url"]
answer_dict.pop('icon', None)
answer_dict.pop('topic', None)
answer_dict.pop('text', None)
answer_dict.pop('url', None)
return [answer_dict]
elif regular_search_queries:
results = []
for result in ddgs.text(query, region='wt-wt', safesearch='moderate',
timelimit=None, max_results=max_results):
if get_website_content:
result["body"] = get_webpage_content(result["href"])
results.append(result)
return results
else:
raise ValueError("One of ('instant_answers', 'regular_search_queries') must be True")
def langchain_search_duckduckgo(query: str, langchain_compressor: LangchainCompressor, max_results: int,
instant_answers: bool):
documents = []
query = query.strip("\"'")
yield f'Getting results from DuckDuckGo...'
with DDGS() as ddgs:
if instant_answers:
answer_list = ddgs.answers(query)
if answer_list:
if max_results > 1:
max_results -= 1 # We already have 1 result now
answer_dict = answer_list[0]
instant_answer_doc = Document(page_content=answer_dict["text"],
metadata={"source": answer_dict["url"]})
documents.append(instant_answer_doc)
results = []
result_urls = []
for result in ddgs.text(query, region='wt-wt', safesearch='moderate', timelimit=None,
max_results=langchain_compressor.num_results):
results.append(result)
result_urls.append(result["href"])
retrieval_gen = Generator(langchain_compressor.retrieve_documents(query, result_urls))
for status_message in retrieval_gen:
yield status_message
documents.extend(retrieval_gen.value)
if not documents: # Fall back to old simple search rather than returning nothing
print("LLM_Web_search | Could not find any page content "
"similar enough to be extracted, using basic search fallback...")
return dict_list_to_pretty_str(results[:max_results])
return docs_to_pretty_str(documents[:max_results])
def langchain_search_searxng(query: str, url: str, langchain_compressor: LangchainCompressor, max_results: int):
yield f'Getting results from Searxng...'
headers = {"User-Agent": "Mozilla/5.0 (X11; Linux x86_64; rv:120.0) Gecko/20100101 Firefox/120.0",
"Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8",
"Accept-Language": "en-US,en;q=0.5"}
result_urls = []
request_str = f"/search?q={urllib.parse.quote(query)}&format=json&pageno="
pageno = 1
while len(result_urls) < langchain_compressor.num_results:
response = requests.get(url + request_str + str(pageno), headers=headers)
if not result_urls: # no results to lose by raising an exception here
response.raise_for_status()
try:
response_dict = response.json()
except JSONDecodeError:
raise ValueError("JSONDecodeError: Please ensure that the SearXNG instance can return data in JSON format")
result_dicts = response_dict["results"]
if not result_dicts:
break
for result in result_dicts:
result_urls.append(result["url"])
pageno += 1
retrieval_gen = Generator(langchain_compressor.retrieve_documents(query, result_urls))
for status_message in retrieval_gen:
yield status_message
documents = retrieval_gen.value
return docs_to_pretty_str(documents[:max_results])
def get_webpage_content(url: str) -> str:
headers = {"User-Agent": "Mozilla/5.0 (X11; Linux x86_64; rv:120.0) Gecko/20100101 Firefox/120.0",
"Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8",
"Accept-Language": "en-US,en;q=0.5"}
if not url.startswith("https://"):
try:
response = requests.get(f"https://{url}", headers=headers)
except:
response = requests.get(url, headers=headers)
else:
response = requests.get(url, headers=headers)
soup = BeautifulSoup(response.content, features="lxml")
for script in soup(["script", "style"]):
script.extract()
strings = soup.stripped_strings
return '\n'.join([s.strip() for s in strings])