Skip to content

Latest commit

 

History

History
122 lines (91 loc) · 3.85 KB

README.md

File metadata and controls

122 lines (91 loc) · 3.85 KB

Optimizing GEneral Matrix-to-Matrix Multiplication (GEMM) Performance on Android

Test Device

We tested on Samsung Galaxy S6, which has a Mali-T760 GPU.

Platform: ARM Platform
  Device: Mali-T760
    OpenCL Driver version  : 1.1 (Android)
    Compute units   : 8
    Clock frequency : 772 MHz
    workgroup sizes : 256

The current configuration is set to link with libOpenCL.so from this device.

To run a test, use

./intelgemm --kernel tn -s [matrix_size] --global-size [global_work_size] --local-size [local_work_size]  --validation

Peak

The peak floating-point computation performance is benchmarked through https://github.com/krrishnarraj/clpeak.

Platform: ARM Platform
  Device: Mali-T760
    Driver version  : 1.1 (Android)
    Compute units   : 8
    Clock frequency : 772 MHz
    workgroups per compute unit : 2048
    workgroup sizes : 256
    max alloc size : 536870912

    Global memory bandwidth (GBPS)
      float   : 6.05
      float2  : 10.51
      float4  : 12.15
      float8  : 12.17
      float16 : 10.68

    Single-precision compute (GFLOPS)
globalWIs = 4194304
      float   : 12.32
      float2  : 32.25
      float4  : 31.79
      float8  : 45.37
      float16 : 154.02

    Double-precision compute (GFLOPS)
      double   : 3.04
      double2  : 30.11
      double4  : 22.09
      double8  : 35.68
      double16 : 34.79

    Integer compute (GIOPS)
      int   : 5.13
      int2  : 12.43
      int4  : 11.99
      int8  : 15.83
      int16 : 72.55

    Transfer bandwidth (GBPS)
      enqueueWriteBuffer         : 4.69
      enqueueReadBuffer          : 4.08
      enqueueMapBuffer(for read) : 2536.00
        memcpy from mapped ptr   : 4.36
      enqueueUnmap(after write)  : 2382.92
        memcpy to mapped ptr     : 4.41

    Kernel launch latency : 1399.80 us
   

Constraints

One important thing to notice is the following constraints [1].

Performance

Main Results

Size CL Kernel Throughput (GFlops)
1024 x 1024 noblock-v8 11.14
1024 x 1024 blocking-2x2-v4 17.4
2048 x 2048 noblock-v8 15.45
2048 x 2048 blocking-2x2-v4 27.3
4096 x 4096 noblock-v8 15.6
4096 x 4096 blocking-2x2-v4 4.4

Other Results

Size CL Kernel Throughput (GFlops)
1024 x 1024 noblock-v16 6.46
1024 x 1024 noblock-v16-dotprod 11.50
2048 x 2048 noblock-v16 6.09
2048 x 2048 noblock-v16-dotprod 15.10
2048 x 2048 blocking-4x4-v8 17.2
2048 x 2048 blocking-4x4-v4 10.6

GEMM Zoo

Available implementations in literature for reference. None of these achieve good performance on our Android test device.

Useful Links

  1. Optimizing OpenCL Kernels for Mali-T600 GPUs