-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path002_kb_rp_coverage.Rmd
633 lines (545 loc) · 22.1 KB
/
002_kb_rp_coverage.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
---
title: "Reprint Author Analysis"
output: github_document
bibliography: pubs.bib
---
```{r, echo = FALSE, message = FALSE, warning = FALSE}
knitr::opts_chunk$set(
comment = "#>",
collapse = TRUE,
warning = FALSE,
message = FALSE,
echo = TRUE,
fig.width = 6,
fig.asp = 0.618,
out.width = "70%",
fig.align = "center",
dpi = 300
)
options(scipen = 999, digits = 2)
knitr::knit_hooks$set(
inline = function(x) {
if (is.numeric(x)) {
return(prettyNum(x, big.mark = ","))
} else{
return(x)
}
}
)
```
```{r setup, echo = FALSE}
# deal with rJava memory allocation
# https://stackoverflow.com/questions/34624002/r-error-java-lang-outofmemoryerror-java-heap-space
options(java.parameters = "-Xmx1024m")
require(tidyverse)
require(RJDBC)
require(rJava)
.jinit()
jdbcDriver <-
JDBC(driverClass = "oracle.jdbc.OracleDriver", classPath = "../inst/jdbc_driver/ojdbc8.jar")
jdbcConnection <-
dbConnect(
jdbcDriver,
"jdbc:oracle:thin:@//biblio-p-db01:1521/bibliodb01.fiz.karlsruhe",
Sys.getenv("kb_user"),
Sys.getenv("kb_pwd")
)
```
## Questions
1. How many records in the Web of Science have affiliation information about reprint authors?
2. How many records in the Web of Science have more than one reprint author?
3. How many reprint authors are co-located (institutional level)?
4. How many reprint authors are internationally co-located (country level)?
5. What is the collaboration network in terms of country affiliations from reprint authors?
Focus:
- Database: wos_b_2019
- Document Types: Articles and Reviews
- Database Collections: `WOS.SCI`, `WOS.SSCI`, `WOS.AHCI`
- Publication Period 2014 - 2018
## Data analysis
### 1. How many records in the Web of Science have affiliation information at the country level about reprint authors?
#### Articles total
```{sql, connection=jdbcConnection, output.var="articles_total"}
select wos_b_2019.items.pubyear, COUNT(DISTINCT(wos_b_2019.items.ut_eid)) as articles_total
from
wos_b_2019.items
inner join
wos_b_2019.databasecollection
on wos_b_2019.databasecollection.fk_items = wos_b_2019.items.pk_items
where
wos_b_2019.databasecollection.edition_value in ('WOS.SCI', 'WOS.SSCI', 'WOS.AHCI')
and wos_b_2019.items.doctype in ('Article', 'Review')
and wos_b_2019.items.pubyear in (2014, 2015, 2016, 2017, 2018)
group by wos_b_2019.items.pubyear
```
```{r}
articles_total %>%
arrange(desc(PUBYEAR))
```
#### Records with reprint authors
Using `wos_b_2019.items_authors_institutions.type = 'RP'` to identify reprint authors.
```{sql, connection=jdbcConnection, output.var="rp_articles_total"}
select wos_b_2019.items.pubyear, COUNT(DISTINCT(wos_b_2019.items.ut_eid)) as rp_articles_total
from
wos_b_2019.items
inner join
wos_b_2019.databasecollection
on wos_b_2019.databasecollection.fk_items = wos_b_2019.items.pk_items
inner join
wos_b_2019.items_authors_institutions
on wos_b_2019.items_authors_institutions.fk_items = wos_b_2019.items.pk_items
where
wos_b_2019.databasecollection.edition_value in ('WOS.SCI', 'WOS.SSCI', 'WOS.AHCI')
and wos_b_2019.items.doctype in ('Article', 'Review')
and wos_b_2019.items.pubyear in (2014, 2015, 2016, 2017, 2018)
and wos_b_2019.items_authors_institutions.type = 'RP'
group by wos_b_2019.items.pubyear
```
```{r}
rp_articles_total %>%
arrange(desc(PUBYEAR))
```
#### Reprint authors records with country information
*Retrieval considerations*
[An earlier exploration](kb_rp_exploration.md)<!--link ist tot!--> studying how affiliations from reprint authors are represented in the WOS-KB revealed that only one affiliation is tagged with `RP in the table `wos_b_2019.items_author_institutions` per author. To obtain all affiliations per reprint author, the following retrieval strategy can be used:
1. Get all authors tagged as RP per item
2. Obtain all institutional addresses per rp_author-item combination including countrycode
3. Summarize observations
*Country codes*
There are two tables containing country codes, `wos_b_2019.institutions.countrycode` and `wos_b_2019.d_items_authors_institutions.inst_countrycode`. First, *`wos_b_2019.institutions.countrycode`* is analyzed
```{sql, connection=jdbcConnection, output.var="rp_cc_articles_total"}
select
d.pubyear, count(distinct(d.ut_eid)) as rp_cc_articles_total
from
wos_b_2019.items_authors_institutions
inner join
(
select
pk_items,
fk_authors,
ut_eid,
pubyear
from
wos_b_2019.items
inner join
wos_b_2019.databasecollection
on wos_b_2019.databasecollection.fk_items = wos_b_2019.items.pk_items
inner join
wos_b_2019.items_authors_institutions
on wos_b_2019.items_authors_institutions.fk_items = wos_b_2019.items.pk_items
where
wos_b_2019.databasecollection.edition_value in (
'WOS.SCI', 'WOS.SSCI', 'WOS.AHCI'
)
and wos_b_2019.items.doctype in (
'Article', 'Review'
)
and wos_b_2019.items.pubyear in (
2014, 2015, 2016, 2017, 2018
)
and wos_b_2019.items_authors_institutions.type = 'RP'
) d
on (
wos_b_2019.items_authors_institutions.fk_items = d.pk_items
and wos_b_2019.items_authors_institutions.fk_authors = d.fk_authors
)
inner join wos_b_2019.institutions on wos_b_2019.institutions.pk_institutions = wos_b_2019.items_authors_institutions.fk_institutions
where wos_b_2019.institutions.countrycode is not null
group by d.pubyear
```
```{r}
rp_cc_articles_total %>%
arrange(desc(PUBYEAR))
```
Data Summary:
```{r}
rq_1_df <- articles_total %>%
left_join(rp_articles_total, by = "PUBYEAR") %>%
mutate(ARTICLE_RP_RATIO = RP_ARTICLES_TOTAL / ARTICLES_TOTAL) %>%
left_join(rp_cc_articles_total, by = "PUBYEAR") %>%
mutate(ARTICLE_CC_RP_RATIO = RP_CC_ARTICLES_TOTAL / ARTICLES_TOTAL) %>%
arrange(desc(PUBYEAR))
rq_1_df
```
```{r}
rq_1_df %>%
gather(ARTICLES_TOTAL, RP_ARTICLES_TOTAL, RP_CC_ARTICLES_TOTAL,
key = "indicator", value = "wos_articles") %>%
ggplot(aes(PUBYEAR, wos_articles, fill = indicator)) +
geom_bar(position="dodge", stat="identity") +
scale_fill_viridis_d("", option = "C", labels = c("Articles + Reviews", "with RP", "with RP and countrycode")) +
theme_minimal() +
labs(y = "wos_b_2019 records",
title = "Coverage of reprint authors with country of affiliation",
subtitle = "wos_b_2019.institutions.countrycode") +
theme(plot.margin = margin(30, 30, 30, 30)) +
theme(panel.grid.minor = element_blank()) +
theme(axis.ticks = element_blank()) +
theme(panel.grid.major.x = element_blank()) +
theme(panel.border = element_blank())
```
Next, *`wos_b_2019.d_items_authors_institutions.inst_countrycode`* is analyzed.
```{sql connection=jdbcConnection, output.var="rp_d_cc_articles_total"}
select
d.pubyear, count(distinct(d.ut_eid)) as rp_d_cc_articles
from
wos_b_2019.d_items_authors_institutions
inner join
(
select
pk_items,
fk_authors,
ut_eid,
pubyear
from
wos_b_2019.items
inner join
wos_b_2019.databasecollection
on wos_b_2019.databasecollection.fk_items = wos_b_2019.items.pk_items
inner join
wos_b_2019.items_authors_institutions
on wos_b_2019.items_authors_institutions.fk_items = wos_b_2019.items.pk_items
where
wos_b_2019.databasecollection.edition_value in (
'WOS.SCI', 'WOS.SSCI', 'WOS.AHCI'
)
and wos_b_2019.items.doctype in (
'Article', 'Review'
)
and wos_b_2019.items.pubyear in (
2014, 2015, 2016, 2017, 2018
)
and wos_b_2019.items_authors_institutions.type = 'RP'
) d
on (
wos_b_2019.d_items_authors_institutions.fk_items = d.pk_items
and wos_b_2019.d_items_authors_institutions.fk_authors = d.fk_authors
)
where wos_b_2019.d_items_authors_institutions.inst_countrycode is not null
group by d.pubyear
```
```{r}
rp_d_cc_articles_total
```
```{r}
rp_df_d <- articles_total %>%
left_join(rp_articles_total, by = "PUBYEAR") %>%
mutate(ARTICLE_RP_RATIO = RP_ARTICLES_TOTAL / ARTICLES_TOTAL) %>%
left_join(rp_d_cc_articles_total, by = "PUBYEAR") %>%
mutate(RP_D_CC_ARTICLES_RATIO = RP_D_CC_ARTICLES / ARTICLES_TOTAL) %>%
arrange(desc(PUBYEAR))
rp_df_d
```
```{r}
rp_df_d %>%
gather(ARTICLES_TOTAL, RP_ARTICLES_TOTAL, RP_D_CC_ARTICLES,
key = "indicator", value = "wos_articles") %>%
ggplot(aes(PUBYEAR, wos_articles, fill = indicator)) +
geom_bar(position="dodge", stat="identity") +
scale_fill_viridis_d("", option = "C", labels = c("Articles + Reviews", "with RP", "with RP and countrycode")) +
theme_minimal() +
labs(y = "wos_b_2019 records",
title = "Coverage of reprint authors with country of affiliation",
subtitle = "wos_b_2019.d_items_authors_institutions.inst_countrycode") +
theme(plot.margin = margin(30, 30, 30, 30)) +
theme(panel.grid.minor = element_blank()) +
theme(axis.ticks = element_blank()) +
theme(panel.grid.major.x = element_blank()) +
theme(panel.border = element_blank())
```
In conclusion, joining with both tables seems feasible, because it results in a thorough countries of affiliation coverage for reprint authors. Overall, `r round(mean(rp_df_d$RP_D_CC_ARTICLES_RATIO) * 100, 2)` % of records representing original articles and reviews in the period 2014 - 2017 provide affiliation information for reprint authors at the country-level. In the following, `wos_b_2019.d_items_authors_institutions.inst_countrycode` is used.
### 2. How many records in the Web of Science have more than one reprint author?
#### Query
```{sql connection=jdbcConnection, output.var="rp_ind_df"}
select
distinct
d.pubyear,
d.ut_eid,
wos_b_2019.d_items_authors_institutions.fk_authors,
wos_b_2019.d_items_authors_institutions.inst_per_auth_cnt,
wos_b_2019.d_items_authors_institutions.country_per_auth_cnt
from
wos_b_2019.d_items_authors_institutions
inner join
(
select
pk_items,
fk_authors,
ut_eid,
pubyear
from
wos_b_2019.items
inner join
wos_b_2019.databasecollection
on wos_b_2019.databasecollection.fk_items = wos_b_2019.items.pk_items
inner join
wos_b_2019.items_authors_institutions
on wos_b_2019.items_authors_institutions.fk_items = wos_b_2019.items.pk_items
where
wos_b_2019.databasecollection.edition_value in (
'WOS.SCI', 'WOS.SSCI', 'WOS.AHCI'
)
and wos_b_2019.items.doctype in (
'Article', 'Review'
)
and wos_b_2019.items.pubyear in (
2014, 2015, 2016, 2017, 2018
)
and wos_b_2019.items_authors_institutions.type = 'RP'
) d
on (
wos_b_2019.d_items_authors_institutions.fk_items = d.pk_items
and wos_b_2019.d_items_authors_institutions.fk_authors = d.fk_authors
)
where
wos_b_2019.d_items_authors_institutions.inst_countrycode is not null
```
#### Backup in KB table space
```{r}
dbWriteTable(conn = jdbcConnection,
name = "rp_ind_df",
value = rp_ind_df,
overwrite = TRUE)
```
#### Analysis: Distribution of the number of reprint authors
```{sql connection=jdbcConnection, output.var="rp_au"}
select
pubyear,
ut_eid,
count(fk_authors) as n_au
from
rp_ind_df
group by
ut_eid,
pubyear
```
Summary statistics
```{r}
summary(rp_au$N_AU)
```
Frequency table of the number of reprint authors per publication. Publications with more than five reprint authors per publication were reduced to the residual category "> 5".
```{r ca_author_count}
tp_au_count <- rp_au %>%
mutate(N_AU = fct_other(factor(N_AU), keep = c("1", "2", "3", "4", "5"),
other_level = "> 5")) %>%
group_by(N_AU, PUBYEAR) %>%
summarize(N = n()) %>%
ungroup() %>%
group_by(PUBYEAR) %>%
mutate(PROP = N / sum(N))
tp_au_count %>%
ggplot(aes(N_AU, PROP, fill = factor(PUBYEAR))) +
geom_bar(stat = "identity") +
scale_fill_brewer(type = "qual", palette = "Set1") +
facet_grid( ~ factor(PUBYEAR)) +
scale_y_continuous(labels = scales::percent_format(accuracy = 5L)) +
labs(
x = "Number of reprint authors per record",
y = "Proportion",
title = "Number of reprint authors per Web of Science record",
subtitle = "Articles and reviews 2014 - 2018"
) +
theme_minimal() +
theme(legend.position = "none") +
theme(plot.margin = margin(30, 30, 30, 30)) +
theme(panel.grid.minor = element_blank()) +
theme(axis.ticks = element_blank()) +
theme(panel.grid.major.x = element_blank()) +
theme(panel.border = element_blank())
```
SQL statement to retrieve all publications with more than one reprint author (incl. country info)
```{sql connection=jdbcConnection, output.var="rp_au_count"}
select
pubyear,
ut_eid,
count(fk_authors)
from
rp_ind_df
group by
ut_eid,
pubyear
having
count(fk_authors) > 1
```
In total, `r length(unique(rp_au_count$UT_EID))` out of `r length(unique(rp_ind_df$UT_EID))` records indexed in the Web of Science for the period 2014 - 2017 have more than one reprint author, representing a percentage of `r round(length(unique(rp_au_count$UT_EID)) / length(unique(rp_ind_df$UT_EID)) * 100, 2)` %. Furthermore, data exploration suggests that starting from 2016 the Web of Science has begun to systematically keep track of more than one reprint author.
### 3. How many reprint authors are co-located (institutional level)?
#### Query
```{sql connection=jdbcConnection, output.var="rp_inst_au_count"}
select
inst_per_auth_cnt,
pubyear,
count(*) as inst_n
from
rp_ind_df
group by
pubyear,
inst_per_auth_cnt
```
#### Analysis
Distribution of the number of institutional affiliations per reprint author and year
```{r}
rp_inst_au_df <- rp_inst_au_count %>%
mutate(INST_PER_AUTH_CNT = fct_other(
factor(INST_PER_AUTH_CNT),
keep = c("1", "2", "3", "4", "5"),
other_level = "> 5"
)) %>%
ungroup() %>%
group_by(PUBYEAR) %>%
mutate(PROP = INST_N / sum(INST_N)) %>%
arrange(INST_PER_AUTH_CNT, PUBYEAR)
rp_inst_au_df %>%
ggplot(aes(
x = factor(INST_PER_AUTH_CNT),
PROP,
fill = factor(PUBYEAR)
)) +
geom_bar(stat = "identity") +
scale_fill_brewer(type = "qual", palette = "Set1") +
facet_grid( ~ PUBYEAR) +
scale_y_continuous(labels = scales::percent_format(accuracy = 5L)) +
labs(
x = "Number of Institutions",
y = "Proportion",
title = "Institutional affiliations per reprint author",
caption = "Derived from wos_b_2019.D_ITEMS_AUTHORS_INSTITUTIONS.INST_PER_AUTH_CNT"
) +
theme_minimal() +
theme(legend.position = "none") +
theme(plot.margin = margin(30, 30, 30, 30)) +
theme(panel.grid.minor = element_blank()) +
theme(axis.ticks = element_blank()) +
theme(panel.grid.major.x = element_blank()) +
theme(panel.border = element_blank())
```
Overall, around half of the reprint authors indexed listed more than one institutional affiliation (N = `r rp_inst_au_count %>% filter(!INST_PER_AUTH_CNT == "1") %>% .$INST_N %>% sum()`, Proportion = `r round(rp_inst_au_count %>% filter(!INST_PER_AUTH_CNT == "1") %>% .$INST_N %>% sum() / rp_inst_au_count %>% .$INST_N %>% sum(), 4) * 100` %).
### 4. How many reprint authors are internationally co-located (country level)?
#### Query
```{sql connection=jdbcConnection, output.var="rp_country_au_count"}
select
country_per_auth_cnt,
pubyear,
count(*) as country_n
from
rp_ind_df
group by
pubyear,
country_per_auth_cnt
```
Frequency table of the number of country affiliation per reprint author and publication. Reprint authors with more than three countries of affiliation at the time of publication were reduced to the residual category "Other".
```{r}
rp_country_au_df <- rp_country_au_count %>%
mutate(COUNTRY_PER_AUTH_CNT = fct_other(
factor(COUNTRY_PER_AUTH_CNT),
keep = c("1", "2", "3"),
other_level = "> 3"
)) %>%
ungroup() %>%
group_by(PUBYEAR) %>%
mutate(PROP = COUNTRY_N / sum(COUNTRY_N)) %>%
arrange(COUNTRY_PER_AUTH_CNT, PUBYEAR)
```
```{r}
rp_country_au_df
```
```{r ca_country_count}
rp_country_au_df %>%
ggplot(aes(
x = factor(COUNTRY_PER_AUTH_CNT),
PROP,
fill = factor(PUBYEAR)
)) +
geom_bar(stat = "identity") +
scale_fill_brewer(type = "qual", palette = "Set1") +
facet_grid( ~ PUBYEAR) +
scale_y_continuous(labels = scales::percent_format(accuracy = 5L)) +
labs(
x = "Number of Countries",
y = "Proportion",
title = "Country affiliations per reprint author",
caption = "Derived from wos_b_2019.D_ITEMS_AUTHORS_INSTITUTIONS.COUNTRY_PER_AUTH_CNT"
) +
theme_minimal() +
theme(legend.position = "none") +
theme(plot.margin = margin(30, 30, 30, 30)) +
theme(panel.grid.minor = element_blank()) +
theme(axis.ticks = element_blank()) +
theme(panel.grid.major.x = element_blank()) +
theme(panel.border = element_blank())
```
Although the number of co-located reprint authors is growing, only a small proportion of reprint author is internationally co-located (N = `r rp_country_au_df %>% filter(!COUNTRY_PER_AUTH_CNT == "1") %>% .$COUNTRY_N %>% sum()`, Proportion = `r round(rp_country_au_df %>% filter(!COUNTRY_PER_AUTH_CNT == "1") %>% .$COUNTRY_N %>% sum() / rp_country_au_df %>% .$COUNTRY_N %>% sum(), 4) * 100` %).
### 5. What is the collaboration network in terms of country affiliations from reprint authors?
#### Query
Obtain publications with country affiliations
```{sql connection=jdbcConnection, output.var="rp_country_mat"}
select distinct wos_b_2019.d_items_authors_institutions.INST_COUNTRYCODE,
d.ut_eid
from
wos_b_2019.d_items_authors_institutions
inner join
(
select
pk_items,
fk_authors,
ut_eid,
pubyear
from
wos_b_2019.items
inner join
wos_b_2019.databasecollection
on wos_b_2019.databasecollection.fk_items = wos_b_2019.items.pk_items
inner join
wos_b_2019.items_authors_institutions
on wos_b_2019.items_authors_institutions.fk_items = wos_b_2019.items.pk_items
where
wos_b_2019.databasecollection.edition_value in (
'WOS.SCI', 'WOS.SSCI', 'WOS.AHCI'
)
and wos_b_2019.items.doctype in (
'Article', 'Review'
)
and wos_b_2019.items.pubyear in (
2014, 2015, 2016, 2017, 2018
)
and wos_b_2019.items_authors_institutions.type = 'RP'
) d
on (
wos_b_2019.d_items_authors_institutions.fk_items = d.pk_items
and wos_b_2019.d_items_authors_institutions.fk_authors = d.fk_authors
)
where
wos_b_2019.d_items_authors_institutions.inst_countrycode is not null
```
#### Analysis
Publications with internationally co-located reprint author(s)
```{r}
co_pubs <- rp_country_mat %>%
group_by(UT_EID) %>%
filter(n() > 1)
```
Country share
```{r}
all_count <- rp_country_mat %>%
count(INST_COUNTRYCODE, sort = TRUE)
co_count <- co_pubs %>%
ungroup() %>%
count(INST_COUNTRYCODE, sort = TRUE, name = "n_co")
left_join(all_count, co_count, by = "INST_COUNTRYCODE") %>%
mutate(prop = n_co / n * 100)
```
Create bi-partite matrix
```{r}
#co_pubs_mat <- as.matrix(table(co_pubs$UT_EID, co_pubs$INST_COUNTRYCODE))
```
calculate unipartite matrix (country level)
```{r}
#co_pubs_mat_t <- t(co_pubs_mat) %*% co_pubs_mat
```
visualise network (tbc)
```{r}
# library(sna)
# sna::gplot(co_pubs_mat_t,
# gmode = "graph",
# vertex.cex = log(diag(co_pubs_mat_t)^0.3),
# usearrows = FALSE)
```