-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathdraw_fusions.R
executable file
·1389 lines (1295 loc) · 74.6 KB
/
draw_fusions.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env Rscript
# print warnings as they happen instead of collecting them for after a loop ends
options(warn=1)
# define valid parameters
parameters <- list(
fusions=list("fusionsFile", "file", "fusions.tsv", T),
annotation=list("exonsFile", "file", "annotation.gtf", T),
output=list("outputFile", "string", "output.pdf", T),
alignments=list("alignmentsFile", "file", "Aligned.sortedByCoord.out.bam"),
cytobands=list("cytobandsFile", "file", "cytobands.tsv"),
minConfidenceForCircosPlot=list("minConfidenceForCircosPlot", "string", "medium"),
proteinDomains=list("proteinDomainsFile", "file", "protein_domains.gff3"),
sampleName=list("sampleName", "string", ""),
squishIntrons=list("squishIntrons", "bool", T),
printExonLabels=list("printExonLabels", "bool", T),
render3dEffect=list("render3dEffect", "bool", T),
pdfWidth=list("pdfWidth", "numeric", 11.692),
pdfHeight=list("pdfHeight", "numeric", 8.267),
color1=list("color1", "string", "#e5a5a5"),
color2=list("color2", "string", "#a7c4e5"),
mergeDomainsOverlappingBy=list("mergeDomainsOverlappingBy", "numeric", 0.9),
optimizeDomainColors=list("optimizeDomainColors", "bool", F),
fontSize=list("fontSize", "numeric", 1),
fontFamily=list("fontFamily", "string", "Helvetica"),
showIntergenicVicinity=list("showIntergenicVicinity", "string", "0"),
transcriptSelection=list("transcriptSelection", "string", "provided"),
fixedScale=list("fixedScale", "numeric", 0),
coverageRange=list("coverageRange", "string", "0")
)
# print help if necessary
args <- commandArgs(trailingOnly=T)
if (any(grepl("^--help", args)) || length(args) == 0) {
usage <- "Usage: draw_fusions.R"
for (parameter in names(parameters)) {
usage <- paste0(usage, " ")
if (length(parameters[[parameter]]) <= 3 || !parameters[[parameter]][[4]])
usage <- paste0(usage, "[")
usage <- paste0(usage, "--", parameter, "=", parameters[[parameter]][[3]])
if (length(parameters[[parameter]]) <= 3 || !parameters[[parameter]][[4]])
usage <- paste0(usage, "]")
}
message(usage)
quit("no", ifelse(length(args) == 0, 1, 0))
}
# make sure mandatory arguments are present
for (parameter in names(parameters))
if (length(parameters[[parameter]]) > 3 && parameters[[parameter]][[4]])
if (!any(grepl(paste0("^--", parameter, "="), args), perl=T))
stop(paste0("Missing mandatory argument: --", parameter))
# set default values
for (parameter in names(parameters))
assign(parameters[[parameter]][[1]], ifelse(parameters[[parameter]][[2]] == "file", "", parameters[[parameter]][[3]]))
# parse command-line parameters
for (arg in args) {
argName <- sub("=.*", "", sub("^--", "", arg, perl=T), perl=T)
argValue <- sub("^[^=]*=", "", arg, perl=T)
if (!(argName %in% names(parameters)) || !grepl("^--", arg, perl=T))
stop(paste("Unknown parameter:", arg))
if (parameters[[argName]][[2]] == "bool") {
if (argValue %in% c("TRUE", "T", "FALSE", "F")) {
assign(parameters[[argName]][[1]], as.logical(argValue))
} else {
stop(paste0("Invalid argument to --", argName))
}
} else if (parameters[[argName]][[2]] == "string") {
assign(parameters[[argName]][[1]], argValue)
} else if (parameters[[argName]][[2]] == "numeric") {
if (is.na(suppressWarnings(as.numeric(argValue))))
stop(paste0("Invalid argument to --", argName))
assign(parameters[[argName]][[1]], as.numeric(argValue))
} else if (parameters[[argName]][[2]] == "file") {
if (file.access(argValue) == -1)
stop(paste("Cannot read file:", argValue))
assign(parameters[[argName]][[1]], argValue)
}
}
# validate values of parameters
if (cytobandsFile == "")
warning("Missing parameter '--cytobands'. No ideograms and circos plots will be drawn.")
if (!(minConfidenceForCircosPlot %in% c("none", "low", "medium", "high")))
stop("Invalid argument to --minConfidenceForCircosPlot")
showIntergenicVicinity <- as.list(unlist(strsplit(showIntergenicVicinity, ",", fixed=T)))
if (!(length(showIntergenicVicinity) %in% c(1,4)))
stop(paste0("Invalid argument to --showIntergenicVicinity"))
showIntergenicVicinity <- lapply(showIntergenicVicinity, function(x) {
if (x == "closestGene") {
return("exon")
} else if (x == "closestProteinCodingGene") {
return("CDS")
} else if (is.na(suppressWarnings(as.numeric(x))) || as.numeric(x) < 0) {
stop(paste0("Invalid argument to --showIntergenicVicinity"))
} else {
return(as.numeric(x))
}
})
if (length(showIntergenicVicinity) == 1)
showIntergenicVicinity <- rep(showIntergenicVicinity, 4)
if (squishIntrons)
if (any(!is.numeric(unlist(showIntergenicVicinity))) || any(showIntergenicVicinity > 0))
stop("--squishIntrons must be disabled, when --showIntergenicVicinity is > 0")
if (!(transcriptSelection %in% c("coverage", "provided", "canonical")))
stop("Invalid argument to --transcriptSelection")
if (fixedScale < 0)
stop("Invalid argument to --fixedScale")
if (!(fontFamily %in% names(pdfFonts())))
stop(paste0("Unknown font: ", fontFamily, ". Available fonts: ", paste(names(pdfFonts()), collapse=", ")))
coverageRange <- suppressWarnings(as.numeric(unlist(strsplit(coverageRange, ",", fixed=T))))
if (!(length(coverageRange) %in% 1:2) || any(is.na(coverageRange)) || any(coverageRange < 0))
stop("Invalid argument to --coverageRange")
# check if required packages are installed
if (!suppressPackageStartupMessages(require(GenomicRanges)))
warning("Package 'GenomicRanges' is not installed. No protein domains and circos plots will be drawn.")
if (!suppressPackageStartupMessages(require(circlize)))
warning("Package 'circlize' is not installed. No circos plots will be drawn.")
if (alignmentsFile != "")
if (!suppressPackageStartupMessages(require(GenomicAlignments)))
stop("Package 'GenomicAlignments' must be installed when '--alignments' is used")
# define colors
changeColorBrightness <- function(color, delta) {
rgb(
min(255,max(0,col2rgb(color)["red",]+delta)),
min(255,max(0,col2rgb(color)["green",]+delta)),
min(255,max(0,col2rgb(color)["blue",]+delta)),
maxColorValue=255
)
}
getDarkColor <- function(color) { changeColorBrightness(color, -100) }
getBrightColor <- function(color) { changeColorBrightness(color, +190) }
darkColor1 <- getDarkColor(color1)
darkColor2 <- getDarkColor(color2)
circosColors <- c(translocation="#000000", duplication="#00bb00", deletion="#ff0000", inversion="#0000ff")
# convenience functions to add/remove "chr" prefix
addChr <- function(contig) {
ifelse(contig == "MT", "chrM", paste0("chr", contig))
}
removeChr <- function(contig) {
sub("^chr", "", sub("^chrM", "MT", contig, perl=T), perl=T)
}
# convenience function to check if a value is between two others
between <- function(value, start, end) {
value >= start & value <= end
}
# read fusions
fusions <- read.table(fusionsFile, stringsAsFactors=F, sep="\t", header=T, comment.char="", quote="")
if (colnames(fusions)[1] == "X.gene1") { # Arriba output
colnames(fusions)[colnames(fusions) %in% c("X.gene1", "strand1.gene.fusion.", "strand2.gene.fusion.")] <- c("gene1", "strand1", "strand2")
fusions$display_contig1 <- sub(":[^:]*$", "", fusions$breakpoint1, perl=T)
fusions$display_contig2 <- sub(":[^:]*$", "", fusions$breakpoint2, perl=T)
fusions$contig1 <- removeChr(fusions$display_contig1)
fusions$contig2 <- removeChr(fusions$display_contig2)
fusions$breakpoint1 <- as.numeric(sub(".*:", "", fusions$breakpoint1, perl=T))
fusions$breakpoint2 <- as.numeric(sub(".*:", "", fusions$breakpoint2, perl=T))
fusions$split_reads1 <- fusions$split_reads1
fusions$split_reads2 <- fusions$split_reads2
fusions$type <- sub(".*(translocation|duplication|deletion|inversion).*", "\\1", fusions$type, perl=T)
fusions$fusion_transcript <- gsub("[()^$]", "", fusions$fusion_transcript)
} else if (colnames(fusions)[1] == "X.FusionName") { # STAR-Fusion
fusions$gene1 <- sub("\\^.*", "", fusions$LeftGene, perl=T)
fusions$gene2 <- sub("\\^.*", "", fusions$RightGene, perl=T)
fusions$strand1 <- sub(".*:(.)$", "\\1/\\1", fusions$LeftBreakpoint, perl=T)
fusions$strand2 <- sub(".*:(.)$", "\\1/\\1", fusions$RightBreakpoint, perl=T)
fusions$display_contig1 <- sub(":[^:]*:[^:]*$", "", fusions$LeftBreakpoint, perl=T)
fusions$display_contig2 <- sub(":[^:]*:[^:]*$", "", fusions$RightBreakpoint, perl=T)
fusions$contig1 <- removeChr(fusions$display_contig1)
fusions$contig2 <- removeChr(fusions$display_contig2)
fusions$breakpoint1 <- as.numeric(sub(".*:([^:]*):[^:]*$", "\\1", fusions$LeftBreakpoint, perl=T))
fusions$breakpoint2 <- as.numeric(sub(".*:([^:]*):[^:]*$", "\\1", fusions$RightBreakpoint, perl=T))
fusions$direction1 <- ifelse(grepl(":\\+$", fusions$LeftBreakpoint, perl=T), "downstream", "upstream")
fusions$direction2 <- ifelse(grepl(":\\+$", fusions$RightBreakpoint, perl=T), "upstream", "downstream")
fusions$gene_id1 <- sub(".*\\^", "", fusions$LeftGene, perl=T)
fusions$gene_id2 <- sub(".*\\^", "", fusions$RightGene, perl=T)
fusions$transcript_id1 <- ifelse(rep(!("CDS_LEFT_ID" %in% colnames(fusions)), nrow(fusions)), ".", fusions$CDS_LEFT_ID)
fusions$transcript_id2 <- ifelse(rep(!("CDS_RIGHT_ID" %in% colnames(fusions)), nrow(fusions)), ".", fusions$CDS_RIGHT_ID)
fusions$fusion_transcript <- ifelse(rep(!("FUSION_CDS" %in% colnames(fusions)), nrow(fusions)), ".", toupper(sub("([a-z]*)", "\\1|", fusions$FUSION_CDS, perl=T)))
fusions$reading_frame <- ifelse(rep(!("PROT_FUSION_TYPE" %in% colnames(fusions)), nrow(fusions)), ".", ifelse(fusions$PROT_FUSION_TYPE == "INFRAME", "in-frame", ifelse(fusions$PROT_FUSION_TYPE == "FRAMESHIFT", "out-of-frame", ".")))
fusions$split_reads <- fusions$JunctionReadCount
fusions$discordant_mates <- fusions$SpanningFragCount
fusions$site1 <- rep("exon", nrow(fusions))
fusions$site2 <- rep("exon", nrow(fusions))
fusions$confidence <- rep("high", nrow(fusions))
fusions$type <- ifelse(fusions$contig1 != fusions$contig2, "translocation", ifelse(fusions$direction1 == fusions$direction2, "inversion", ifelse((fusions$direction1 == "downstream") == (fusions$breakpoint1 < fusions$breakpoint2), "deletion", "duplication")))
} else {
stop("Unrecognized fusion file format")
}
pdf(outputFile, onefile=T, width=pdfWidth, height=pdfHeight, title=ifelse(sampleName != "", sampleName, fusionsFile))
par(family=fontFamily)
if (nrow(fusions) == 0) {
plot(0, 0, type="l", xaxt="n", yaxt="n", xlab="", ylab="")
text(0, 0, "empty input file")
warning("empty input file")
dev.off()
quit("no")
}
# read cytoband annotation
cytobands <- NULL
if (cytobandsFile != "") {
cytobands <- read.table(cytobandsFile, header=T, colClasses=c("character", "numeric", "numeric", "character", "character"))
cytobands <- cytobands[order(cytobands$contig, cytobands$start, cytobands$end),]
}
# read exon annotation
message("Loading annotation")
exons <- scan(exonsFile, what=list(contig="",src="",type="",start=0,end=0,score="",strand="",frame="",attributes=""), sep="\t", comment.char="#", quote='"', multi.line=F)
attr(exons, "row.names") <- .set_row_names(length(exons[[1]]))
class(exons) <- "data.frame"
exons <- exons[exons$type %in% c("exon","CDS"),c("contig","type","start","end","strand","attributes")]
exons$contig <- removeChr(exons$contig)
parseGtfAttribute <- function(attribute, gtf) {
parsed <- sub(paste0(".*", attribute, "[ =]([^;]+).*"), "\\1", gtf$attributes, perl=T)
failedToParse <- parsed == gtf$attributes
if (any(failedToParse)) {
warning(paste0("Failed to parse '", attribute, "' attribute of ", sum(failedToParse), " record(s)."))
parsed <- ifelse(failedToParse, "", parsed)
}
return(parsed)
}
exons$geneID <- parseGtfAttribute("gene_id", exons)
exons$geneName <- parseGtfAttribute("gene_name", exons)
exons$geneName <- ifelse(exons$geneName == "", exons$geneID, exons$geneName)
exons$transcript <- parseGtfAttribute("transcript_id", exons)
exons$exonNumber <- ifelse(rep(printExonLabels, nrow(exons)), parseGtfAttribute("exon_number", exons), "")
# read protein domain annotation
proteinDomains <- NULL
if (proteinDomainsFile != "") {
message("Loading protein domains")
proteinDomains <- scan(proteinDomainsFile, what=list(contig="",src="",type="",start=0,end=0,score="",strand="",frame="",attributes=""), sep="\t", comment.char="", quote="", multi.line=F)
attr(proteinDomains, "row.names") <- .set_row_names(length(proteinDomains[[1]]))
class(proteinDomains) <- "data.frame"
proteinDomains$color <- parseGtfAttribute("color", proteinDomains)
proteinDomains$proteinDomainName <- sapply(parseGtfAttribute("Name", proteinDomains), URLdecode)
proteinDomains$proteinDomainID <- parseGtfAttribute("protein_domain_id", proteinDomains)
}
# insert dummy annotations for intergenic breakpoints
if (any(fusions$site1 == "intergenic" | fusions$site2 == "intergenic")) {
intergenicBreakpoints <- rbind(
setNames(fusions[fusions$site1 == "intergenic",c("gene1", "strand1", "contig1", "breakpoint1")], c("gene", "strand", "contig", "breakpoint")),
setNames(fusions[fusions$site2 == "intergenic",c("gene2", "strand2", "contig2", "breakpoint2")], c("gene", "strand", "contig", "breakpoint"))
)
exons <- rbind(exons, data.frame(
contig=intergenicBreakpoints$contig,
type="intergenic",
start=sapply(intergenicBreakpoints$breakpoint-1000, max, 1),
end=intergenicBreakpoints$breakpoint+1000,
strand=".",
attributes="",
geneName=intergenicBreakpoints$gene,
geneID=paste0(intergenicBreakpoints$contig, ":", intergenicBreakpoints$breakpoint),
transcript=paste0(intergenicBreakpoints$contig, ":", intergenicBreakpoints$breakpoint),
exonNumber="intergenic"
))
fusions[fusions$site1 == "intergenic","gene_id1"] <- paste0(fusions[fusions$site1 == "intergenic","contig1"], ":", fusions[fusions$site1 == "intergenic","breakpoint1"])
fusions[fusions$site2 == "intergenic","gene_id2"] <- paste0(fusions[fusions$site2 == "intergenic","contig2"], ":", fusions[fusions$site2 == "intergenic","breakpoint2"])
}
drawVerticalGradient <- function(left, right, y, color, selection=NULL) {
# check if gradient should only be drawn in part of the region
if (!is.null(selection)) {
y <- y[selection]
left <- left[selection]
right <- right[selection]
}
# draw gradient
for (i in 1:length(y)) {
polygon(
c(left[1:i], right[1:i]),
c(y[1:i], y[i:1]),
border=NA,
col=rgb(col2rgb(color)["red",], col2rgb(color)["green",], col2rgb(color)["blue",], col2rgb(color, alpha=T)["alpha",]*(1/length(y)), max=255)
)
}
}
if (!render3dEffect) # nullify function, if no 3D effect should be drawn
drawVerticalGradient <- function(left, right, y, color, selection=NULL) { }
drawCurlyBrace <- function(left, right, top, bottom, tip) {
smoothness <- 20
x <- cumsum(exp(-seq(-2.5, 2.5, len=smoothness)^2))
x <- x/max(x)
y <- seq(top, bottom, len=smoothness)
lines(left+(tip-left)+x*(left-tip), y)
lines(tip+x*(right-tip), y)
}
drawIdeogram <- function(adjust, left, right, y, cytobands, contig, breakpoint) {
# define design of ideogram
bandColors <- setNames(rgb(100:0, 100:0, 100:0, maxColorValue=100), paste0("gpos", 0:100))
bandColors <- c(bandColors, gneg="#ffffff", acen="#ec4f4f", stalk="#0000ff")
cytobands$color <- bandColors[cytobands$giemsa]
arcSteps <- 30 # defines roundness of arc
curlyBraceHeight <- 0.03
ideogramHeight <- 0.04
ideogramWidth <- 0.4
# extract bands of given contig
bands <- cytobands[cytobands$contig==contig,]
if (nrow(bands) == 0) {
warning(paste("Ideogram of contig", contig, "cannot be drawn, because no Giemsa staining information is available."))
return(NULL)
}
# scale width of ideogram to fit inside given region
bands$left <- bands$start / max(cytobands$end) * ideogramWidth
bands$right <- bands$end / max(cytobands$end) * ideogramWidth
# left/right-align cytobands
offset <- ifelse(adjust=="left", left, right - max(bands$right))
bands$left <- bands$left + offset
bands$right <- bands$right + offset
# draw curly braces
tip <- min(bands$left) + (max(bands$right)-min(bands$left)) / (max(bands$end)-min(bands$start)) * breakpoint
drawCurlyBrace(left, right, y-0.05+curlyBraceHeight, y-0.05, tip)
# draw title of chromosome
text((max(bands$right)+min(bands$left))/2, y+0.07, paste("chromosome", contig), font=2, cex=fontSize, adj=c(0.5,0))
# draw name of band
bandName <- bands[which(between(breakpoint, bands$start, bands$end)), "name"]
text(tip, y+0.03, bandName, cex=fontSize, adj=c(0.5,0))
# draw start of chromosome
leftArcX <- bands[1,"left"] + (1+cos(seq(pi/2,1.5*pi,len=arcSteps))) * (bands[1,"right"]-bands[1,"left"])
leftArcY <- y + sin(seq(pi/2,1.5*pi,len=arcSteps)) * (ideogramHeight/2)
polygon(leftArcX, leftArcY, col=bands[1,"color"])
# draw bands
centromereStart <- NULL
centromereEnd <- NULL
for (band in 2:(nrow(bands)-1)) {
if (bands[band,"giemsa"] != "acen") {
rect(bands[band,"left"], y-ideogramHeight/2, bands[band,"right"], y+ideogramHeight/2, col=bands[band,"color"])
} else { # draw centromere
if (is.null(centromereStart)) {
polygon(c(bands[band,"left"], bands[band,"right"], bands[band,"left"]), c(y-ideogramHeight/2, y, y+ideogramHeight/2), col=bands[band,"color"])
centromereStart <- bands[band,"left"]
} else {
polygon(c(bands[band,"right"], bands[band,"left"], bands[band,"right"]), c(y-ideogramHeight/2, y, y+ideogramHeight/2), col=bands[band,"color"])
centromereEnd <- bands[band,"right"]
}
}
}
# draw end of chromosome
band <- nrow(bands)
rightArcX <- bands[band,"right"] - (1+cos(seq(1.5*pi,pi/2,len=arcSteps))) * (bands[band,"right"]-bands[band,"left"])
rightArcY <- y + sin(seq(pi/2,1.5*pi,len=arcSteps)) * ideogramHeight/2
polygon(rightArcX, rightArcY, col=bands[band,"color"])
# if there is no centromere, make an artificial one with length zero
if (is.null(centromereStart) || is.null(centromereEnd)) {
centromereStart <- bands[1,"right"]
centromereEnd <- bands[1,"right"]
}
# draw gradients for 3D effect
drawVerticalGradient(leftArcX, rep(centromereStart, arcSteps), leftArcY, rgb(0,0,0,0.8), 1:round(arcSteps*0.4)) # black from top on p-arm
drawVerticalGradient(leftArcX, rep(centromereStart, arcSteps), leftArcY, rgb(1,1,1,0.7), round(arcSteps*0.4):round(arcSteps*0.1)) # white to top on p-arm
drawVerticalGradient(leftArcX, rep(centromereStart, arcSteps), leftArcY, rgb(1,1,1,0.7), round(arcSteps*0.4):round(arcSteps*0.6)) # white to bottom on p-arm
drawVerticalGradient(leftArcX, rep(centromereStart, arcSteps), leftArcY, rgb(0,0,0,0.9), arcSteps:round(arcSteps*0.5)) # black from bottom on p-arm
drawVerticalGradient(rightArcX, rep(centromereEnd, arcSteps), rightArcY, rgb(0,0,0,0.8), 1:round(arcSteps*0.4)) # black from top on q-arm
drawVerticalGradient(rightArcX, rep(centromereEnd, arcSteps), rightArcY, rgb(1,1,1,0.7), round(arcSteps*0.4):round(arcSteps*0.1)) # white to top on q-arm
drawVerticalGradient(rightArcX, rep(centromereEnd, arcSteps), rightArcY, rgb(1,1,1,0.7), round(arcSteps*0.4):round(arcSteps*0.6)) # white to bottom on q-arm
drawVerticalGradient(rightArcX, rep(centromereEnd, arcSteps), rightArcY, rgb(0,0,0,0.9), arcSteps:round(arcSteps*0.5)) # black from bottom on q-arm
}
drawCoverage <- function(left, right, y, coverage, start, end, color) {
maxResolution <- 5000 # max number of data points to draw coverage
# draw coverage as bars
if (!is.null(coverage)) {
coverageData <- as.numeric(coverage[IRanges(sapply(start, max, min(start(coverage))), sapply(end, min, max(end(coverage))))])
# downsample to maxResolution, if there are too many data points
coverageData <- aggregate(coverageData, by=list(round(1:length(coverageData) * (right-left) * maxResolution/length(coverageData))), mean)$x
polygon(c(left, seq(left, right, length.out=length(coverageData)), right), c(y, y+coverageData*0.1, y), col=color, border=NA)
}
}
drawStrand <- function(left, right, y, color, strand) {
if (strand %in% c("+", "-")) {
# draw strand
lines(c(left+0.001, right-0.001), c(y, y), col=color, lwd=2)
lines(c(left+0.001, right-0.001), c(y, y), col=rgb(1,1,1,0.1), lwd=1)
# indicate orientation
if (right - left > 0.01)
for (i in seq(left+0.005, right-0.005, by=sign(right-left-2*0.005)*0.01)) {
arrows(i, y, i+0.001*ifelse(strand=="+", 1, -1), y, col=color, length=0.05, lwd=2, angle=60)
arrows(i, y, i+0.001*ifelse(strand=="+", 1, -1), y, col=rgb(1,1,1,0.1), length=0.05, lwd=1, angle=60)
}
}
}
drawExon <- function(left, right, y, color, title, type) {
gradientSteps <- 10 # defines smoothness of gradient
exonHeight <- 0.03
if (type == "CDS") {
# draw coding regions as thicker bars
rect(left, y+exonHeight, right, y+exonHeight/2-0.001, col=color, border=NA)
rect(left, y-exonHeight, right, y-exonHeight/2+0.001, col=color, border=NA)
# draw border
lines(c(left, left, right, right), c(y+exonHeight/2, y+exonHeight, y+exonHeight, y+exonHeight/2), col=getDarkColor(color), lend=2)
lines(c(left, left, right, right), c(y-exonHeight/2, y-exonHeight, y-exonHeight, y-exonHeight/2), col=getDarkColor(color), lend=2)
# draw gradients for 3D effect
drawVerticalGradient(rep(left, gradientSteps), rep(right, gradientSteps), seq(y+0.03, y+0.015, len=gradientSteps), rgb(0,0,0,0.2))
drawVerticalGradient(rep(left, gradientSteps), rep(right, gradientSteps), seq(y-0.03, y-0.015, len=gradientSteps), rgb(0,0,0,0.3))
} else if (type == "exon") {
rect(left, y+exonHeight/2, right, y-exonHeight/2, col=color, border=getDarkColor(color))
# draw gradients for 3D effect
drawVerticalGradient(rep(left, gradientSteps), rep(right, gradientSteps), seq(y, y+exonHeight/2, len=gradientSteps), rgb(1,1,1,0.6))
drawVerticalGradient(rep(left, gradientSteps), rep(right, gradientSteps), seq(y, y-exonHeight/2, len=gradientSteps), rgb(1,1,1,0.6))
# add exon label
text((left+right)/2, y, title, cex=0.9*fontSize)
}
}
drawCircos <- function(fusion, fusions, cytobands, minConfidenceForCircosPlot, circosColors) {
# check if Giemsa staining information is available
for (contig in unlist(fusions[fusion,c("contig1", "contig2")])) {
if (!any(cytobands$contig==contig)) {
warning(paste0("Circos plot cannot be drawn, because no Giemsa staining information is available for contig ", contig, "."))
# draw empty plots as placeholder
plot(0, 0, type="l", xlim=c(0, 1), ylim=c(0, 1), bty="n", xaxt="n", yaxt="n", xlab="", ylab="")
plot(0, 0, type="l", xlim=c(0, 1), ylim=c(0, 1), bty="n", xaxt="n", yaxt="n", xlab="", ylab="")
return(NULL)
}
}
# initialize with empty circos plot
circos.clear()
circos.initializeWithIdeogram(cytoband=cytobands, plotType=NULL)
# use gene names as labels or <contig>:<position> for intergenic breakpoints
geneLabels <- data.frame(
contig=c(fusions[fusion,"contig1"], fusions[fusion,"contig2"]),
start=c(fusions[fusion,"breakpoint1"], fusions[fusion,"breakpoint2"])
)
geneLabels$end <- geneLabels$start + 1
geneLabels$gene <- c(fusions[fusion,"gene1"], fusions[fusion,"gene2"])
geneLabels$gene <- ifelse(c(fusions[fusion,"site1"], fusions[fusion,"site2"]) == "intergenic", paste0(c(fusions[fusion,"display_contig1"], fusions[fusion,"display_contig2"]), ":", geneLabels$start), geneLabels$gene)
# draw gene labels
circos.genomicLabels(geneLabels, labels.column=4, side="outside", cex=fontSize, labels_height=0.27)
# draw chromosome labels in connector plot
for (contig in unique(cytobands$contig)) {
set.current.cell(track.index=2, sector.index=contig) # draw in gene label connector track (track.index=2)
circos.text(CELL_META$xcenter, CELL_META$ycenter, contig, cex=0.85)
}
# draw ideograms
circos.genomicIdeogram(cytoband=cytobands)
# draw arcs
confidenceRank <- c(low=0, medium=1, high=2)
for (i in c(setdiff(1:nrow(fusions), fusion), fusion)) { # draw fusion of interest last, such that its arc is on top
f <- fusions[i,]
if (any(cytobands$contig==f$contig1) && any(cytobands$contig==f$contig2)) # ignore viral contigs, because we have no cytoband information for them
if (minConfidenceForCircosPlot != "none" && confidenceRank[f$confidence] >= confidenceRank[minConfidenceForCircosPlot] || i==fusion)
circos.link(
f$contig1, f$breakpoint1,
f$contig2, f$breakpoint2,
lwd=2, col=ifelse(i==fusion, circosColors[f$type], getBrightColor(circosColors[f$type]))
)
}
# draw legend
plot(0, 0, type="l", xlim=c(0, 1), ylim=c(0, 1), bty="n", xaxt="n", yaxt="n", ylab="", xlab="")
legend(x="top", legend=names(circosColors), col=sapply(circosColors, getBrightColor), lwd=3, ncol=2, box.lty=0)
}
drawProteinDomains <- function(fusion, exons1, exons2, proteinDomains, color1, color2, mergeDomainsOverlappingBy, optimizeDomainColors) {
exonHeight <- 0.2
exonsY <- 0.5
geneNamesY <- exonsY - exonHeight/2 - 0.05
# find coding exons
codingExons1 <- exons1[exons1$type == "CDS" & fusion$site1 != "intergenic",]
codingExons2 <- exons2[exons2$type == "CDS" & fusion$site2 != "intergenic",]
# cut off coding regions beyond breakpoint
if (fusion$direction1 == "upstream") {
codingExons1 <- codingExons1[codingExons1$end >= fusion$breakpoint1,]
codingExons1$start <- ifelse(codingExons1$start < fusion$breakpoint1, fusion$breakpoint1, codingExons1$start)
} else {
codingExons1 <- codingExons1[codingExons1$start <= fusion$breakpoint1,]
codingExons1$end <- ifelse(codingExons1$end > fusion$breakpoint1, fusion$breakpoint1, codingExons1$end)
}
if (fusion$direction2 == "upstream") {
codingExons2 <- codingExons2[codingExons2$end >= fusion$breakpoint2,]
codingExons2$start <- ifelse(codingExons2$start < fusion$breakpoint2, fusion$breakpoint2, codingExons2$start)
} else {
codingExons2 <- codingExons2[codingExons2$start <= fusion$breakpoint2,]
codingExons2$end <- ifelse(codingExons2$end > fusion$breakpoint2, fusion$breakpoint2, codingExons2$end)
}
# find overlapping domains
exonsGRanges1 <- GRanges(codingExons1$contig, IRanges(codingExons1$start, codingExons1$end), strand=codingExons1$strand)
exonsGRanges2 <- GRanges(codingExons2$contig, IRanges(codingExons2$start, codingExons2$end), strand=codingExons2$strand)
domainsGRanges <- GRanges(proteinDomains$contig, IRanges(proteinDomains$start, proteinDomains$end), strand=proteinDomains$strand)
domainsGRanges$proteinDomainName <- proteinDomains$proteinDomainName
domainsGRanges$proteinDomainID <- proteinDomains$proteinDomainID
domainsGRanges$color <- proteinDomains$color
domainsGRanges <- domainsGRanges[suppressWarnings(unique(queryHits(findOverlaps(domainsGRanges, union(exonsGRanges1, exonsGRanges2)))))]
# group overlapping domains by domain ID
domainsGRangesList <- GRangesList(lapply(unique(domainsGRanges$proteinDomainID), function(x) { domainsGRanges[domainsGRanges$proteinDomainID == x] }))
# trim protein domains to exon boundaries
trimDomains <- function(domainsGRangesList, exonsGRanges) {
do.call(
"rbind",
lapply(
domainsGRangesList,
function(x) {
intersected <- as.data.frame(reduce(suppressWarnings(intersect(x, exonsGRanges))))
if (nrow(intersected) > 0) {
intersected$proteinDomainName <- head(x$proteinDomainName, 1)
intersected$proteinDomainID <- head(x$proteinDomainID, 1)
intersected$color <- head(x$color, 1)
} else {
intersected$proteinDomainName <- character()
intersected$proteinDomainID <- character()
intersected$color <- character()
}
return(intersected)
}
)
)
}
retainedDomains1 <- trimDomains(domainsGRangesList, exonsGRanges1)
retainedDomains2 <- trimDomains(domainsGRangesList, exonsGRanges2)
# calculate length of coding exons
codingExons1$length <- codingExons1$end - codingExons1$start + 1
codingExons2$length <- codingExons2$end - codingExons2$start + 1
# abort, if there are no coding regions
if (sum(exons1$type == "CDS") + sum(exons2$type == "CDS") == 0) {
text(0.5, 0.5, "Genes are not protein-coding.")
return(NULL)
}
codingLength1 <- sum(codingExons1$length)
codingLength2 <- sum(codingExons2$length)
if (codingLength1 + codingLength2 == 0) {
text(0.5, 0.5, "No coding regions retained in fusion transcript.")
return(NULL)
}
if ((codingLength1 == 0 || grepl("\\.$", fusion$strand1)) && (codingLength2 == 0 || grepl("\\.$", fusion$strand2))) {
text(0.5, 0.5, "Failed to determine retained protein domains due to lack of strand information.")
return(NULL)
}
antisenseTranscription1 <- sub("/.*", "", fusion$strand1) != sub(".*/", "", fusion$strand1)
antisenseTranscription2 <- sub("/.*", "", fusion$strand2) != sub(".*/", "", fusion$strand2)
if ((codingLength1 == 0 || antisenseTranscription1) && (codingLength2 == 0 || antisenseTranscription2)) {
text(0.5, 0.5, "No coding regions due to antisense transcription.")
return(NULL)
}
# remove introns from protein domains
removeIntronsFromProteinDomains <- function(codingExons, retainedDomains) {
if (nrow(codingExons) == 0) return(NULL)
cumulativeIntronLength <- 0
previousExonEnd <- 0
for (exon in 1:nrow(codingExons)) {
if (codingExons[exon,"start"] > previousExonEnd)
cumulativeIntronLength <- cumulativeIntronLength + codingExons[exon,"start"] - previousExonEnd
domainsInExon <- which(between(retainedDomains$start, codingExons[exon,"start"], codingExons[exon,"end"]))
retainedDomains[domainsInExon,"start"] <- retainedDomains[domainsInExon,"start"] - cumulativeIntronLength
domainsInExon <- which(between(retainedDomains$end, codingExons[exon,"start"], codingExons[exon,"end"]))
retainedDomains[domainsInExon,"end"] <- retainedDomains[domainsInExon,"end"] - cumulativeIntronLength
previousExonEnd <- codingExons[exon,"end"]
}
# merge adjacent domains
retainedDomains <- do.call(
"rbind",
lapply(
unique(retainedDomains$proteinDomainID),
function(x) {
domain <- retainedDomains[retainedDomains$proteinDomainID == x,]
merged <- reduce(GRanges(domain$seqnames, IRanges(domain$start, domain$end), strand=domain$strand))
merged$proteinDomainName <- head(domain$proteinDomainName, 1)
merged$proteinDomainID <- head(domain$proteinDomainID, 1)
merged$color <- head(domain$color, 1)
return(as.data.frame(merged))
}
)
)
return(retainedDomains)
}
retainedDomains1 <- removeIntronsFromProteinDomains(codingExons1, retainedDomains1)
retainedDomains2 <- removeIntronsFromProteinDomains(codingExons2, retainedDomains2)
# abort, if no domains are retained
if (is.null(retainedDomains1) && is.null(retainedDomains2)) {
text(0.5, 0.5, "No protein domains retained in fusion.")
return(NULL)
}
# merge domains with similar coordinates
mergeSimilarDomains <- function(domains, mergeDomainsOverlappingBy) {
if (is.null(domains)) return(domains)
merged <- domains[F,] # create empty data frame
domains <- domains[order(domains$end - domains$start, decreasing=T),] # start with bigger domains => bigger domains are retained
for (domain in rownames(domains)) {
if (!any((abs(merged$start - domains[domain,"start"]) + abs(merged$end - domains[domain,"end"])) / (domains[domain,"end"] - domains[domain,"start"] + 1) <= 1-mergeDomainsOverlappingBy))
merged <- rbind(merged, domains[domain,])
}
return(merged)
}
retainedDomains1 <- mergeSimilarDomains(retainedDomains1, mergeDomainsOverlappingBy)
retainedDomains2 <- mergeSimilarDomains(retainedDomains2, mergeDomainsOverlappingBy)
# if desired, reassign colors to protein domains to maximize contrast
if (optimizeDomainColors) {
uniqueDomains <- unique(c(retainedDomains1$proteinDomainID, retainedDomains2$proteinDomainID))
# make rainbow of pretty pastell colors
colors <- rainbow(length(uniqueDomains))
colors <- apply(col2rgb(colors), 2, function(x) { 0.3 + y/255 * 0.7 }) # make pastell colors
colors <- apply(colors, 2, function(x) {rgb(x["red"], x["green"], x["blue"])}) # convert back to rgb
# reassign colors
names(colors) <- uniqueDomains
retainedDomains1$color <- colors[retainedDomains1$proteinDomainID]
retainedDomains2$color <- colors[retainedDomains2$proteinDomainID]
}
# reverse exons and protein domains, if on the reverse strand
if (any(codingExons1$strand == "-")) {
codingExons1$length <- rev(codingExons1$length)
temp <- retainedDomains1$end
retainedDomains1$end <- codingLength1 - retainedDomains1$start
retainedDomains1$start <- codingLength1 - temp
}
if (any(codingExons2$strand == "-")) {
codingExons2$length <- rev(codingExons2$length)
temp <- retainedDomains2$end
retainedDomains2$end <- codingLength2 - retainedDomains2$start
retainedDomains2$start <- codingLength2 - temp
}
# normalize length to 1
codingExons1$length <- codingExons1$length / (codingLength1 + codingLength2)
codingExons2$length <- codingExons2$length / (codingLength1 + codingLength2)
retainedDomains1$start <- retainedDomains1$start / (codingLength1 + codingLength2)
retainedDomains1$end <- retainedDomains1$end / (codingLength1 + codingLength2)
retainedDomains2$start <- retainedDomains2$start / (codingLength1 + codingLength2)
retainedDomains2$end <- retainedDomains2$end / (codingLength1 + codingLength2)
# draw coding regions
rect(0, exonsY-exonHeight/2, sum(codingExons1$length), exonsY+exonHeight/2, col=color1, border=NA)
rect(sum(codingExons1$length), exonsY-exonHeight/2, sum(codingExons1$length) + sum(codingExons2$length), exonsY+exonHeight/2, col=color2, border=NA)
# indicate exon boundaries as dotted lines
exonBoundaries <- cumsum(c(codingExons1$length, codingExons2$length))
if (length(exonBoundaries) > 1) {
exonBoundaries <- exonBoundaries[1:(length(exonBoundaries)-1)]
for (exonBoundary in exonBoundaries)
lines(c(exonBoundary, exonBoundary), c(exonsY-exonHeight, exonsY+exonHeight), col="white", lty=3)
}
# find overlapping domains
# nest if one is contained in another
# stack if they overlap partially
nestDomains <- function(domains) {
if (length(unlist(domains)) == 0) return(domains)
domains <- domains[order(domains$end - domains$start, decreasing=T),]
rownames(domains) <- 1:nrow(domains)
# find nested domains and make tree structure
domains$parent <- 0
for (domain in rownames(domains))
domains[domains$start >= domains[domain,"start"] & domains$end <= domains[domain,"end"] & rownames(domains) != domain,"parent"] <- domain
# find partially overlapping domains
maxOverlappingDomains <- max(1, as.integer(coverage(IRanges(domains$start*10e6, domains$end*10e6))))
padding <- 1 / maxOverlappingDomains * 0.4
domains$y <- 0
domains$height <- 0
adjustPositionAndHeight <- function(parentDomain, y, height, padding, e) {
for (domain in which(e$domains$parent == parentDomain)) {
overlappingDomains <- which((between(e$domains$start, e$domains[domain,"start"], e$domains[domain,"end"]) |
between(e$domains$end , e$domains[domain,"start"], e$domains[domain,"end"])) &
e$domains$parent == parentDomain)
e$domains[domain,"height"] <- height/length(overlappingDomains) - padding * (length(overlappingDomains)-1) / length(overlappingDomains)
e$domains[domain,"y"] <- y + (which(domain==overlappingDomains)-1) * (e$domains[domain,"height"] + padding)
adjustPositionAndHeight(domain, e$domains[domain,"y"]+padding, e$domains[domain,"height"]-2*padding, padding, e)
}
}
adjustPositionAndHeight(0, 0, 1, padding, environment())
domains <- domains[order(domains$height, decreasing=T),] # draw nested domains last
return(domains)
}
retainedDomains1 <- nestDomains(retainedDomains1)
retainedDomains2 <- nestDomains(retainedDomains2)
retainedDomains1$y <- exonsY - exonHeight/2 + 0.025 + (exonHeight-2*0.025) * retainedDomains1$y
retainedDomains2$y <- exonsY - exonHeight/2 + 0.025 + (exonHeight-2*0.025) * retainedDomains2$y
retainedDomains1$height <- retainedDomains1$height * (exonHeight-2*0.025)
retainedDomains2$height <- retainedDomains2$height * (exonHeight-2*0.025)
# draw domains
drawProteinDomainRect <- function(left, bottom, right, top, color) {
rect(left, bottom, right, top, col=color, border=getDarkColor(color))
# draw gradients for 3D effect
gradientSteps <- 20
drawVerticalGradient(rep(left, gradientSteps), rep(right, gradientSteps), seq(top, bottom, len=gradientSteps), rgb(1,1,1,0.7))
drawVerticalGradient(rep(left, gradientSteps), rep(right, gradientSteps), seq(bottom, bottom+(top-bottom)*0.4, len=gradientSteps), rgb(0,0,0,0.1))
}
if (length(unlist(retainedDomains1)) > 0)
for (domain in 1:nrow(retainedDomains1))
drawProteinDomainRect(retainedDomains1[domain,"start"], retainedDomains1[domain,"y"], retainedDomains1[domain,"end"], retainedDomains1[domain,"y"]+retainedDomains1[domain,"height"], retainedDomains1[domain,"color"])
if (length(unlist(retainedDomains2)) > 0)
for (domain in 1:nrow(retainedDomains2))
drawProteinDomainRect(sum(codingExons1$length)+retainedDomains2[domain,"start"], retainedDomains2[domain,"y"], sum(codingExons1$length)+retainedDomains2[domain,"end"], retainedDomains2[domain,"y"]+retainedDomains2[domain,"height"], retainedDomains2[domain,"color"])
# draw gene names, if there are coding exons
if (codingLength1 > 0)
text(sum(codingExons1$length)/2, geneNamesY, fusion$gene1, font=2, cex=fontSize)
if (codingLength2 > 0)
text(sum(codingExons1$length)+sum(codingExons2$length)/2, geneNamesY, fusion$gene2, font=2, cex=fontSize)
# calculate how many non-adjacent unique domains there are
# we need this info to know where to place labels vertically
countUniqueDomains <- function(domains) {
uniqueDomains <- 0
if (length(unlist(domains)) > 0) {
uniqueDomains <- 1
if (nrow(domains) > 1) {
previousDomain <- domains[1,"proteinDomainID"]
for (domain in 2:nrow(domains)) {
if (previousDomain != domains[domain,"proteinDomainID"])
uniqueDomains <- uniqueDomains + 1
previousDomain <- domains[domain,"proteinDomainID"]
}
}
}
return(uniqueDomains)
}
if (length(unlist(retainedDomains1)) > 0)
retainedDomains1 <- retainedDomains1[order(retainedDomains1$start),]
uniqueDomains1 <- countUniqueDomains(retainedDomains1)
if (length(unlist(retainedDomains2)) > 0)
retainedDomains2 <- retainedDomains2[order(retainedDomains2$end, decreasing=T),]
uniqueDomains2 <- countUniqueDomains(retainedDomains2)
# draw title of plot
titleY <- exonsY + exonHeight/2 + (uniqueDomains1 + 2) * 0.05
text(0.5, titleY+0.01, "RETAINED PROTEIN DOMAINS", adj=c(0.5, 0), font=2, cex=fontSize)
text(0.5, titleY, ifelse(fusion$reading_frame %in% c("in-frame", "out-of-frame"), paste(fusion$reading_frame, "fusion"), ifelse(fusion$reading_frame == "stop-codon", "stop codon before fusion junction", "reading frame unclear")), adj=c(0.5, 1), cex=fontSize)
# draw domain labels for gene1
if (length(unlist(retainedDomains1)) > 0) {
previousConnectorX <- -1
previousLabelX <- -1
labelY <- exonsY + exonHeight/2 + uniqueDomains1 * 0.05
for (domain in 1:nrow(retainedDomains1)) {
# if possible avoid overlapping lines of labels
connectorX <- min(retainedDomains1[domain,"start"] + 0.01, (retainedDomains1[domain,"start"] + retainedDomains1[domain,"end"])/2)
if (connectorX - previousConnectorX < 0.01 && retainedDomains1[domain,"end"] > previousConnectorX + 0.01)
connectorX <- previousConnectorX + 0.01
labelX <- max(connectorX, previousLabelX) + 0.02
# use a signle label for adjacent domains of same type
adjacentDomainsOfSameType <- domain + 1 <= nrow(retainedDomains1) && retainedDomains1[domain+1,"proteinDomainID"] == retainedDomains1[domain,"proteinDomainID"]
if (adjacentDomainsOfSameType) {
labelX <- retainedDomains1[domain+1,"start"] + 0.015
} else {
text(labelX, labelY, retainedDomains1[domain,"proteinDomainName"], adj=c(0,0.5), col=getDarkColor(retainedDomains1[domain,"color"]), cex=fontSize)
}
lines(c(labelX-0.005, connectorX, connectorX), c(labelY, labelY, retainedDomains1[domain,"y"]+retainedDomains1[domain,"height"]), col=getDarkColor(retainedDomains1[domain,"color"]))
if (!adjacentDomainsOfSameType)
labelY <- labelY - 0.05
previousConnectorX <- connectorX
previousLabelX <- labelX
}
}
# draw domain labels for gene2
if (length(unlist(retainedDomains2)) > 0) {
previousConnectorX <- 100
previousLabelX <- 100
labelY <- exonsY - exonHeight/2 - (uniqueDomains2+1) * 0.05
for (domain in 1:nrow(retainedDomains2)) {
# if possible avoid overlapping connector lines of labels
connectorX <- sum(codingExons1$length) + max(retainedDomains2[domain,"end"] - 0.01, (retainedDomains2[domain,"start"] + retainedDomains2[domain,"end"])/2)
if (previousConnectorX - connectorX < 0.01 && sum(codingExons1$length) + retainedDomains2[domain,"start"] < previousConnectorX - 0.01)
connectorX <- previousConnectorX - 0.01
labelX <- min(connectorX, previousLabelX) - 0.02
# use a signle label for adjacent domains of same type
adjacentDomainsOfSameType <- domain + 1 <= nrow(retainedDomains2) && retainedDomains2[domain+1,"proteinDomainID"] == retainedDomains2[domain,"proteinDomainID"]
if (adjacentDomainsOfSameType) {
labelX <- sum(codingExons1$length) + retainedDomains2[domain+1,"end"] - 0.015
} else {
text(labelX, labelY, retainedDomains2[domain,"proteinDomainName"], adj=c(1,0.5), col=getDarkColor(retainedDomains2[domain,"color"]), cex=fontSize)
}
lines(c(labelX+0.005, connectorX, connectorX), c(labelY, labelY, retainedDomains2[domain,"y"]), col=getDarkColor(retainedDomains2[domain,"color"]))
if (!adjacentDomainsOfSameType)
labelY <- labelY + 0.05
previousConnectorX <- connectorX
previousLabelX <- labelX
}
}
}
findExons <- function(exons, contig, geneID, direction, breakpoint, coverage, transcriptId, transcriptSelection) {
# use the provided transcript if desired
if (transcriptSelection == "provided" && transcriptId != "." && transcriptId != "") {
candidateExons <- exons[exons$transcript == transcriptId,]
if (nrow(candidateExons) == 0) {
warning(paste0("Unknown transcript given in fusions file (", transcriptId, "), selecting a different one"))
} else {
return(candidateExons)
}
}
if (transcriptSelection == "canonical") {
candidateExons <- exons[exons$geneID == geneID & exons$contig == contig,]
} else {
# look for exon with breakpoint as splice site
transcripts <- exons[exons$geneID == geneID & exons$contig == contig & exons$type == "exon" & (direction == "downstream" & abs(exons$end - breakpoint) <= 2 | direction == "upstream" & abs(exons$start - breakpoint) <= 2),"transcript"]
candidateExons <- exons[exons$transcript %in% transcripts,]
# if none was found, use all exons of the gene closest to the breakpoint
if (nrow(candidateExons) == 0)
candidateExons <- exons[exons$geneID == geneID & exons$contig == contig,]
# if we have coverage information, use the transcript with the highest coverage if there are multiple hits
if (!is.null(coverage)) {
highestCoverage <- -1
transcriptWithHighestCoverage <- NULL
lengthOfTranscriptWithHighestCoverage <- 0
for (transcript in unique(candidateExons$transcript)) {
exonsOfTranscript <- candidateExons[candidateExons$transcript==transcript,]
exonsOfTranscript$start <- sapply(exonsOfTranscript$start, max, min(start(coverage)))
exonsOfTranscript$end <- sapply(exonsOfTranscript$end, min, max(end(coverage)))
lengthOfTranscript <- sum(exonsOfTranscript$end - exonsOfTranscript$start + 1)
coverageSum <- sum(as.numeric(coverage[IRanges(exonsOfTranscript$start, exonsOfTranscript$end)]))
# we prefer shorter transcripts over longer ones, because otherwise there is a bias towards transcripts with long UTRs
# => a longer transcript must have substantially higher coverage to replace a shorter one
substantialDifference <- (1 - min(lengthOfTranscript, lengthOfTranscriptWithHighestCoverage) / max(lengthOfTranscript, lengthOfTranscriptWithHighestCoverage)) / 10
if (lengthOfTranscript > lengthOfTranscriptWithHighestCoverage && coverageSum * (1-substantialDifference) > highestCoverage ||
lengthOfTranscript < lengthOfTranscriptWithHighestCoverage && coverageSum > highestCoverage * (1-substantialDifference)) {
highestCoverage <- coverageSum
transcriptWithHighestCoverage <- transcript
lengthOfTranscriptWithHighestCoverage <- lengthOfTranscript
}
}
if (highestCoverage > 0)
candidateExons <- candidateExons[candidateExons$transcript==transcriptWithHighestCoverage,]
}
# if the gene has multiple transcripts, search for transcripts which encompass the breakpoint
if (length(unique(candidateExons$transcript)) > 1) {
transcriptStart <- aggregate(candidateExons$start, by=list(candidateExons$transcript), min)
rownames(transcriptStart) <- transcriptStart[,1]
transcriptEnd <- aggregate(candidateExons$end, by=list(candidateExons$transcript), max)
rownames(transcriptEnd) <- transcriptEnd[,1]
encompassingExons <- between(breakpoint, transcriptStart[candidateExons$transcript,2], transcriptEnd[candidateExons$transcript,2])
if (any(encompassingExons))
candidateExons <- candidateExons[encompassingExons,]
}
}
# find the consensus transcript, if there are multiple hits
if (length(unique(candidateExons$transcript)) > 1) {
consensusTranscript <-
ifelse(grepl("appris_principal_1", candidateExons$attributes), 12,
ifelse(grepl("appris_principal_2", candidateExons$attributes), 11,
ifelse(grepl("appris_principal_3", candidateExons$attributes), 10,
ifelse(grepl("appris_principal_4", candidateExons$attributes), 9,
ifelse(grepl("appris_principal_5", candidateExons$attributes), 8,
ifelse(grepl("appris_principal", candidateExons$attributes), 7,
ifelse(grepl("appris_candidate_longest", candidateExons$attributes), 6,
ifelse(grepl("appris_candidate", candidateExons$attributes), 5,
ifelse(grepl("appris_alternative_1", candidateExons$attributes), 4,
ifelse(grepl("appris_alternative_2", candidateExons$attributes), 3,
ifelse(grepl("appris_alternative", candidateExons$attributes), 2,
ifelse(grepl("CCDS", candidateExons$attributes), 1,
0
))))))))))))
candidateExons <- candidateExons[consensusTranscript == max(consensusTranscript),]
}
# use the transcript with the longest coding sequence, if there are still multiple hits
if (length(unique(candidateExons$transcript)) > 1) {
codingSequenceLength <- ifelse(candidateExons$type == "CDS", candidateExons$end - candidateExons$start, 0)
totalCodingSequenceLength <- aggregate(codingSequenceLength, by=list(candidateExons$transcript), sum)
rownames(totalCodingSequenceLength) <- totalCodingSequenceLength[,1]
candidateExons <- candidateExons[totalCodingSequenceLength[candidateExons$transcript,2] == max(totalCodingSequenceLength[,2]),]
}
# use the transcript with the longest overall sequence, if there are still multiple hits
if (length(unique(candidateExons$transcript)) > 1) {
exonLength <- candidateExons$end - candidateExons$start
totalExonLength <- aggregate(exonLength, by=list(candidateExons$transcript), sum)
rownames(totalExonLength) <- totalExonLength[,1]
candidateExons <- candidateExons[totalExonLength[candidateExons$transcript,2] == max(totalExonLength[,2]),]
}
# if there are still multiple hits, select the first one
candidateExons <- unique(candidateExons[candidateExons$transcript == head(unique(candidateExons$transcript), 1),])
return(candidateExons)
}
findClosestGene <- function(exons, contig, breakpoint, extraConditions) {
# find exons near breakpoint (extraConditions must define what is considered "near")
closestExons <- exons[exons$contig == contig & extraConditions,] # find closest exon
closestExons <- exons[exons$contig == contig & exons$geneID %in% closestExons$geneID,] # select all exons of closest gene
# when more than one gene found with the given name, use the closest one
if (length(unique(closestExons$geneID)) > 1) { # more than one gene found with the given name => use the closest one
distanceToBreakpoint <- aggregate(1:nrow(closestExons), by=list(closestExons$geneID), function(x) { min(abs(closestExons[x,"start"]-breakpoint), abs(closestExons[x,"end"]-breakpoint)) })
closestGene <- head(distanceToBreakpoint[distanceToBreakpoint[,2] == min(distanceToBreakpoint[,2]),1], 1)
closestExons <- closestExons[closestExons$geneID == closestGene,]
}
# when no gene was found, return default values
if (nrow(closestExons) == 0) {
return(IRanges(max(1, breakpoint-1000), breakpoint+1000))
} else {
return(IRanges(min(closestExons$start), max(closestExons$end)))
}
}
# main loop starts here
for (fusion in 1:nrow(fusions)) {
message(paste0("Drawing fusion #", fusion, ": ", fusions[fusion,"gene1"], ":", fusions[fusion,"gene2"]))
# if showIntergenicVicinity is a number, take it as is
# if it is a keyword (closestGene/closestProteinCodingGene), determine the range dynamically
showVicinity <- rep(0, 4)
if (fusions[fusion,"site1"] == "intergenic") {
showVicinity[1] <- ifelse(
is.numeric(showIntergenicVicinity[[1]]),
showIntergenicVicinity[[1]],
fusions[fusion,"breakpoint1"] - start(findClosestGene(exons, fusions[fusion,"contig1"], fusions[fusion,"breakpoint1"], exons$end < fusions[fusion,"breakpoint1"] & exons$type == showIntergenicVicinity[[1]]))
)
showVicinity[2] <- ifelse(
is.numeric(showIntergenicVicinity[[2]]),
showIntergenicVicinity[[2]],
end(findClosestGene(exons, fusions[fusion,"contig1"], fusions[fusion,"breakpoint1"], exons$start > fusions[fusion,"breakpoint1"] & exons$type == showIntergenicVicinity[[2]])) - fusions[fusion,"breakpoint1"]
)
}
if (fusions[fusion,"site2"] == "intergenic") {
showVicinity[3] <- ifelse(
is.numeric(showIntergenicVicinity[[3]]),
showIntergenicVicinity[[3]],
fusions[fusion,"breakpoint2"] - start(findClosestGene(exons, fusions[fusion,"contig2"], fusions[fusion,"breakpoint2"], exons$end < fusions[fusion,"breakpoint2"] & exons$type == showIntergenicVicinity[[3]]))
)
showVicinity[4] <- ifelse(
is.numeric(showIntergenicVicinity[[4]]),
showIntergenicVicinity[[4]],
end(findClosestGene(exons, fusions[fusion,"contig2"], fusions[fusion,"breakpoint2"], exons$start > fusions[fusion,"breakpoint2"] & exons$type == showIntergenicVicinity[[4]])) - fusions[fusion,"breakpoint2"]
)
}
# compute coverage from alignments file
coverage1 <- NULL
coverage2 <- NULL
if (alignmentsFile != "") {
# determine range in which we need to compute the coverage
determineCoverageRegion <- function(exons, geneID, contig, breakpoint, showVicinityLeft, showVicinityRight) {
closestGene <- findClosestGene(exons, contig, breakpoint, exons$geneID == geneID)
return(IRanges(min(start(closestGene), breakpoint-showVicinityLeft), max(end(closestGene), breakpoint+showVicinityRight)))
}
coverageRegion1 <- determineCoverageRegion(exons, fusions[fusion,"gene_id1"], fusions[fusion,"contig1"], fusions[fusion,"breakpoint1"], showVicinity[1], showVicinity[2])
coverageRegion2 <- determineCoverageRegion(exons, fusions[fusion,"gene_id2"], fusions[fusion,"contig2"], fusions[fusion,"breakpoint2"], showVicinity[3], showVicinity[4])
# function which reads alignments from BAM file with & without "chr" prefix
readCoverage <- function(alignmentsFile, contig, coverageRegion) {
coverageData <- tryCatch(
{
alignments <- readGAlignments(alignmentsFile, param=ScanBamParam(which=GRanges(contig, coverageRegion)))
coverage(alignments)[[contig]]
},
error=function(e) {
alignments <- readGAlignments(alignmentsFile, param=ScanBamParam(which=GRanges(addChr(contig), coverageRegion)))
coverage(alignments)[[addChr(contig)]]
}
)
if (exists("alignments")) rm(alignments)
return(coverageData)
}
# get coverage track
coverage1 <- readCoverage(alignmentsFile, fusions[fusion,"contig1"], coverageRegion1)
coverage2 <- readCoverage(alignmentsFile, fusions[fusion,"contig2"], coverageRegion2)
# shrink coverage range to chromosome boundaries to avoid subscript out of bounds errors
coverageRegion1 <- IRanges(max(start(coverageRegion1), min(start(coverage1))), min(end(coverageRegion1), max(end(coverage1))))
coverageRegion2 <- IRanges(max(start(coverageRegion2), min(start(coverage2))), min(end(coverageRegion2), max(end(coverage2))))
}
# find all exons belonging to the fused genes
exons1 <- findExons(exons, fusions[fusion,"contig1"], fusions[fusion,"gene_id1"], fusions[fusion,"direction1"], fusions[fusion,"breakpoint1"], coverage1, fusions[fusion,"transcript_id1"], transcriptSelection)
if (nrow(exons1) == 0) {
par(mfrow=c(1,1))
plot(0, 0, type="l", xaxt="n", yaxt="n", xlab="", ylab="")
text(0, 0, paste0("exon coordinates of ", fusions[fusion,"gene1"], " not found in\n", exonsFile))
warning(paste("exon coordinates of", fusions[fusion,"gene1"], "not found"))
next
}
exons2 <- findExons(exons, fusions[fusion,"contig2"], fusions[fusion,"gene_id2"], fusions[fusion,"direction2"], fusions[fusion,"breakpoint2"], coverage2, fusions[fusion,"transcript_id2"], transcriptSelection)
if (nrow(exons2) == 0) {
par(mfrow=c(1,1))
plot(0, 0, type="l", xaxt="n", yaxt="n", xlab="", ylab="")
text(0, 0, paste0("exon coordinates of ", fusions[fusion,"gene2"], " not found in\n", exonsFile))
warning(paste("exon coordinates of", fusions[fusion,"gene2"], "not found"))
next
}
# in case of intergenic breakpoints, show the vicinity
if (sum(showVicinity) > 0) {