-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
137 lines (114 loc) · 4.45 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
from setup import option
from utils import set_random_seed
from model import Net2
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from dataset import TrainDS, TestDS
import os
import numpy as np
from sklearn.metrics import accuracy_score
import torch.optim as optim
def main():
args = option()
if args.seed is not None:
set_random_seed(args.seed)
if args.gpu is not None:
print("Use GPU: {} for training".format(args.gpu))
model = Net2()
if os.path.isfile(args.pretrained):
print("=> loading checkpoint '{}'".format(args.pretrained))
checkpoint = torch.load(args.pretrained, map_location="cpu")
state_dict = checkpoint['state_dict']
for k in list(state_dict.keys()):
if k.startswith('encoder_q'):
# remove prefix
state_dict[k[len("encoder_q."):]] = state_dict[k]
# delete renamed or unused k
del state_dict[k]
print("=> loaded pre-trained model '{}'".format(args.pretrained))
if args.gpu is not None:
torch.cuda.set_device(args.gpu)
model = model.cuda(args.gpu)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
net = model.to(device)
criterion = nn.CrossEntropyLoss().cuda(args.gpu)
optimizer = optim.Adam(net.parameters(), lr=args.lr)
normalize = transforms.Normalize(
(2382.7, 2368.9, 2688.8, 382590, -15.279, 29.642, -5.3076),
(1260.8, 780.56, 1356.5, 134780, 0.22072, 125.31, 19.850))
augmentation_lidar = transforms.Compose([
normalize,
])
mytrainset = TrainDS(augmentation_lidar)
mytestset = TestDS(augmentation_lidar)
train_loader = torch.utils.data.DataLoader(dataset=mytrainset,
batch_size=args.batch_size,
shuffle=True,
num_workers=2)
test_loader = torch.utils.data.DataLoader(dataset=mytestset,
batch_size=args.batch_size,
shuffle=False,
num_workers=2)
total_loss = 0
Loss_list = []
Accuracy_list = []
max_acc = 0
for epoch in range(args.epochs):
net.train()
epoch_loss = 0
data_length = 0
for i, (hsi, lidar, tr_labels) in enumerate(train_loader):
hsi = hsi.to(device)
lidar = lidar.to(device)
tr_labels = tr_labels.to(device)
output = net(hsi, lidar)
loss = criterion(output, tr_labels)
epoch_loss += loss.item() * hsi.size(0)
data_length += hsi.size(0)
optimizer.zero_grad()
loss.backward()
optimizer.step()
epoch_loss /= data_length
total_loss += epoch_loss
print('[Epoch: %d] [loss avg: %.4f] [current loss: %.4f]' %
(epoch + 1, total_loss / (epoch + 1), epoch_loss))
net.eval()
count = 0
epoch_loss = 0
data_length = 0
for hsi, lidar, gtlabels in test_loader:
hsi = hsi.to(device)
lidar = lidar.to(device)
gtlabels = gtlabels.to(device)
outputs = net(hsi, lidar)
loss = criterion(outputs, gtlabels)
epoch_loss += loss.item() * hsi.size(0)
data_length += hsi.size(0)
outputs = np.argmax(outputs.detach().cpu().numpy(), axis=1)
if count == 0:
y_pred_test = outputs
gty = gtlabels.cpu()
count = 1
else:
y_pred_test = np.concatenate((y_pred_test, outputs)) #
gty = np.concatenate((gty, gtlabels.cpu()))
epoch_loss /= data_length
cur_acc = accuracy_score(gty, y_pred_test)
Loss_list.append(epoch_loss)
Accuracy_list.append(cur_acc * 100)
modelname = 'houston2018_' + str(cur_acc)
torch.save({
'epoch': epoch,
'state_dict': net.state_dict()
}, './houston2018res/' + modelname + '.pth')
if (max_acc < cur_acc):
max_acc = cur_acc
torch.save({
'epoch': epoch,
'state_dict': net.state_dict()
}, './model_best.pth')
print("cur_loss:", epoch_loss, " cur_acc:", cur_acc, " max_acc:",
max_acc)
if __name__ == '__main__':
main()