-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
321 lines (259 loc) · 9.65 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
from flask import Flask, request, jsonify, render_template, send_file
from sqlalchemy import create_engine, text
from sqlalchemy.pool import QueuePool
from flask_cors import CORS
import numpy as np
import subprocess
import json
import sys
import hashlib
from datetime import datetime
import pandas as pd
# from scipy.interpolate import interp1d
from scipy.interpolate import UnivariateSpline
# import rpy2.robjects as robjects
import os
from dotenv import load_dotenv
# import static.py.color
from static.py import color
name_of_storylines = np.array([
"historical-rcp85_HadGEM2-ES_ALADIN63_ADAMONT",
"historical-rcp85_CNRM-CM5_ALADIN63_ADAMONT",
"historical-rcp85_EC-EARTH_HadREM3-GA7_ADAMONT",
"historical-rcp85_HadGEM2-ES_CCLM4-8-17_ADAMONT"
])
color_of_storylines = np.array([
"#569A71",
"#EECC66",
"#E09B2F",
"#791F5D"
])
def round_int(value):
if np.isinf(value):
return value
elif value.is_integer():
return int(value)
return value
load_dotenv()
DB_USER = os.environ.get('DB_USER')
DB_PASSWORD = os.environ.get('DB_PASSWORD')
DB_HOST = os.environ.get('DB_HOST')
DB_PORT = os.environ.get('DB_PORT')
DB_NAME = os.environ.get('DB_NAME')
debug = os.environ.get('DEBUG')
current_dir = os.path.dirname(os.path.abspath(__file__))
R_dir = os.path.join(current_dir, "static", "R")
app = Flask(__name__, static_url_path='', static_folder='static')
CORS(app, resources={r"/*": {"origins": "*"}})
db_url = f'postgresql://{DB_USER}:{DB_PASSWORD}@{DB_HOST}:{DB_PORT}/{DB_NAME}'
engine = create_engine(db_url, poolclass=QueuePool)
@app.route('/')
@app.route('/plus-d-eau-ou-moins-d-eau/nord-et-sud')
@app.route('/plus-d-eau-ou-moins-d-eau/et-entre-les-deux')
@app.route('/plus-d-eau-ou-moins-d-eau/le-changement-dans-la-continuite')
@app.route('/plus-d-eau-ou-moins-d-eau/ajouter-une-pincee-de-variabilite-naturelle')
@app.route('/plus-d-eau-ou-moins-d-eau/raconter-les-trajectoires')
@app.route('/des-etiages-plus-severe/moins-d-eau-l-ete')
@app.route('/des-etiages-plus-severe/et-c-est-certain')
@app.route('/des-etiages-plus-severe/des-etiages-plus-longs')
@app.route('/des-crues-incertaines/quelle-evolution-en-france')
@app.route('/des-crues-incertaines/et-d-abord-dans-quelle-direction')
@app.route('/des-crues-incertaines/ajouter-une-louche-de-variabilite')
@app.route('/a-propos')
@app.route('/exploration-avancee')
def index():
return render_template('index.html')
# @app.route('/api/base_url', methods=['GET'])
# def get_api_base_url():
# print(api_base_url)
# return jsonify({"api_base_url": api_base_url})
cache = {}
def get_hash(chr):
return hashlib.sha256(chr.encode()).hexdigest()
@app.route('/get_delta_on_horizon', methods=['POST'])
def delta_post():
# Get parameters from the JSON payload
data = request.json
n = data.get('n')
exp = data.get('exp')
chain = data.get('chain')
variable = data.get('variable')
horizon = data.get('horizon')
check_cache = data.get('check_cache')
chr = str(n)+exp+str(chain)+variable+horizon
hash = get_hash(chr)
if check_cache and hash in cache:
# print("read from cache")
response = cache[hash]
else:
# print("computed")
connection = engine.connect()
sql_query = f"""
WITH hm_average AS (
SELECT code, gcm, rcm, bc, AVG(value) AS value
FROM delta_{exp}_{variable}_{horizon}
WHERE chain IN :chain AND n >= {n}
GROUP BY code, gcm, rcm, bc
),
bc_average AS (
SELECT code, AVG(value) AS value
FROM hm_average
GROUP BY code, gcm, rcm
)
SELECT s.*, b.value
FROM stations s
JOIN (
SELECT code, AVG(value) AS value
FROM bc_average
GROUP BY code
) b ON s.code = b.code;
"""
result = connection.execute(
text(sql_query),
{'chain': tuple(chain)}
)
columns = result.keys()
rows = result.fetchall()
data = [{f"{column_name}": value for column_name, value in zip(columns, row)} for row in rows]
sql_query = f"""
SELECT *
FROM variables
WHERE variable_en = :variable;
"""
result = connection.execute(
text(sql_query),
{'variable': variable}
)
columns = result.keys()
rows = result.fetchall()
meta = [{f"{column_name}": value for column_name, value in zip(columns, row)} for row in rows][0]
connection.close()
if meta["to_normalise"]:
meta["unit_fr"] = "%"
meta["unit_en"] = "%"
Palette = meta['palette']
Palette = Palette.split(" ")
meta['palette'] = Palette
Code = [x['code'] for x in data]
nCode = len(Code)
Delta = [x['value'] for x in data]
q01Delta = np.quantile(Delta, 0.01)
q99Delta = np.quantile(Delta, 0.99)
res = color.compute_colorBin(q01Delta, q99Delta,
len(Palette), center=0)
bin = res['bin']
bin = [str(round_int(x)) for x in bin]
Fill = color.get_colors(Delta, res['upBin'],
res['lowBin'], Palette)
color_to_find = np.array(["#F6E8C3", "#C7EAE5",
"#EFE2E9", "#F5E4E2"])
color_to_switch = np.array(["#EFD695", "#A1DCD3",
"#DBBECE", "#E7BDB8"])
for i, d in enumerate(data):
d['fill'] = Fill[i]
d['fill_text'] = color.switch_color(Fill[i],
color_to_find,
color_to_switch)
response = {'data': data,
'bin': bin}
response.update(meta)
response = jsonify(response)
cache[hash] = response
# print(sys.getsizeof(cache))
return response
@app.route('/get_delta_serie', methods=['POST'])
def serie_post():
# Get parameters from the JSON payload
data = request.json
code = data.get('code')
exp = data.get('exp')
chain = data.get('chain')
variable = data.get('variable')
# print("a")
connection = engine.connect()
sql_query = f"""
SELECT chain, date, value
FROM delta_{exp}_{variable}
WHERE chain IN :chain AND code = '{code}';
"""
result = connection.execute(
text(sql_query),
{'chain': tuple(chain)}
)
connection.close()
columns = result.keys()
rows = result.fetchall()
# print("b")
data = pd.DataFrame(rows, columns=columns)
data['date'] = pd.to_datetime(data['date'])
data['climate_chain'] = data['chain'].str.rsplit("_", n=1).str[0]
data['opacity'] = "0.08"
data['stroke_width'] = "1px"
data['color'] = "#ADABAA"
data['order'] = 0
# print("c")
for storyline in name_of_storylines:
data_med = data[data['climate_chain'] == storyline].groupby(['date'])['value'].median().reset_index()
data_med = data_med.dropna()
# x = pd.to_numeric(data_med['date']) / 10**9
# y = data_med['value']
# x_str = ' '.join(map(str, x))
# y_str = ' '.join(map(str, y))
# command = [
# "Rscript",
# os.path.join(R_dir, "compute_spline.R"),
# "--x", x_str,
# "--y", y_str
# ]
# process = subprocess.Popen(command,
# stdout=subprocess.PIPE,
# stderr=subprocess.PIPE)
# output, error = process.communicate()
# y = output.decode().strip().split('\n')
# data_med['value'] = pd.to_numeric(y)
x = pd.to_numeric(data_med['date']) / 10**9
y = data_med['value']
smoothing_factor = 10**100
spline = UnivariateSpline(x, y, s=smoothing_factor, k=4)
y_smooth = spline(x)
data_med['value'] = y_smooth
data_med['chain'] = storyline + "_back"
data_med['climate_chain'] = storyline + "_back"
data_med['opacity'] = "1"
data_med['stroke_width'] = "4px"
data_med['color'] = "#ffffff"
data_med['order'] = 1
data = pd.concat([data, data_med], ignore_index=True)
data_med['chain'] = storyline
data_med['climate_chain'] = storyline
data_med['opacity'] = "1"
data_med['stroke_width'] = "2px"
data_med['color'] = color_of_storylines[name_of_storylines == storyline][0]
data_med['order'] = 2
data = pd.concat([data, data_med], ignore_index=True)
# print("d")
data['date'] = data['date'].dt.strftime("%Y-%m-%d")
data = data.rename(columns={'value': 'y', 'date': 'x'})
group = ['chain', 'color', 'stroke_width', 'opacity', 'order']
data = data.groupby(group).apply(lambda x: x[['x', 'y']].to_dict('records')).reset_index(name='values')
data = data.sort_values(by=['order'], ascending=True)
# print("e")
json_output = []
for index, row in data.iterrows():
json_row = {'chain': row['chain'],
'color': row['color'],
'order': row['order'],
'stroke_width': row['stroke_width'],
'opacity': row['opacity'],
'values': row['values']}
json_output.append(json_row)
# print("f")
json_output_cleaned = json_output.copy()
for item in json_output_cleaned:
for record in item['values']:
if np.isnan(record['y']):
record['y'] = None
json_output_str = json.dumps(json_output_cleaned)
return json_output_str
if __name__ == '__main__':
app.run(debug=debug)