-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrandom_crop.py
76 lines (67 loc) · 2.69 KB
/
random_crop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
from PIL import Image
import numpy as np
import os
import random
import argparse
def random_crop(img, mask, height, width, num_of_crops,name,stride=1,dir_name='data'):
Image_dir = dir_name + '/Images'
Mask_dir = dir_name + '/Masks'
directories = [dir_name,Image_dir,Mask_dir]
for directory in directories:
if not os.path.exists(directory):
os.makedirs(directory)
max_x = int(((img.shape[0]-height)/stride)+1)
max_y = int(((img.shape[1]-width)/stride)+1)
max_crops = (max_x)*(max_y)
crop_seq = [i for i in range(0,max_crops)]
for i in range(num_of_crops):
crop = random.choice(crop_seq)
#print("crop_value for",i,":",crop)
if crop ==0:
x = 0
y = 0
else:
x = int((crop+1)/max_y)
#print(x)
y = int((crop+1)%max_y)
#print(y)
crop_img_arr = img[x:x+width,y:y+height]
#print(crop_img_arr.shape)
crop_mask_arr = mask[x:x+width,y:y+height]
crop_img = Image.fromarray(crop_img_arr)
crop_mask = Image.fromarray(crop_mask_arr)
img_name = directories[1] + "/" + name + "_" + str(i+1)+".png"
mask_name = directories[2] + "/" + name + "_mask_" + str(i+1)+".png"
crop_img.save(img_name)
crop_mask.save(mask_name)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--input_dim', type=int, default=512)
parser.add_argument('--n_crops', type=int, default=50)
parser.add_argument('--datadir', type=str, required=True, help='path/to/data_directory',default='Dataset')
parser.add_argument('--output_dir', type=str, default='data')
args = parser.parse_args()
# Abnormal Fundus/Angio Image pairs
ab = [4,5,6,8,18,21,28]
for i in range(7):
img_name = args.datadir+"/ABNORMAL/"+str(ab[i])+".jpg"
im = Image.open(img_name)
img_arr = np.asarray(im)
mask_name = args.datadir+"/ABNORMAL/"+str(ab[i])+"-"+str(ab[i])+".jpg"
mask = Image.open(mask_name)
mask_arr = np.asarray(mask)
name = str(i+1)
random_crop(img_arr, mask_arr, args.input_dim, args.input_dim, args.n_crops, name)
# Normal Fundus/Angio Image pairs
n = [1,4,7,8,11,15,16,21,24,28]
k=0
for i in range(7,17):
img_name = args.datadir+"/NORMAL/"+str(n[k])+"-"+str(n[k])+".jpg"
im = Image.open(img_name)
img_arr = np.asarray(im)
mask_name = args.datadir+"/NORMAL/"+str(n[k])+".jpg"
mask = Image.open(mask_name)
mask_arr = np.asarray(mask)
name = str(i+1)
random_crop(img_arr, mask_arr, args.input_dim, args.input_dim, args.n_crops,name,dir_name=args.output_dir)
k=k+1