-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdacs.py
315 lines (278 loc) · 14.5 KB
/
dacs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
# ---------------------------------------------------------------
# Copyright (c) 2022-2023 ETH Zurich, Suman Saha, Lukas Hoyer. All rights reserved.
# Licensed under the Apache License, Version 2.0
# The ema model and the domain-mixing are based on:
# https://github.com/vikolss/DACS
# ---------------------------------------------------------------
import math
import os
import random
from copy import deepcopy
import mmcv
import numpy as np
import torch
from matplotlib import pyplot as plt
from timm.models.layers import DropPath
from torch.nn.modules.dropout import _DropoutNd
from mmseg.core import add_prefix
from mmdet.models import UDA, build_detector
from mmdet.models.uda.uda_decorator import UDADecorator, get_module
from mmdet.models.utils.dacs_transforms import (denorm, get_class_masks, get_mean_std, strong_transform)
from mmseg.utils.visualize_pred import subplotimg
from mmdet.utils.utils import downscale_label_ratio
def _params_equal(ema_model, model):
for ema_param, param in zip(ema_model.named_parameters(),
model.named_parameters()):
if not torch.equal(ema_param[1].data, param[1].data):
# print("Difference in", ema_param[0])
return False
return True
def calc_grad_magnitude(grads, norm_type=2.0):
norm_type = float(norm_type)
if norm_type == math.inf:
norm = max(p.abs().max() for p in grads)
else:
norm = torch.norm(
torch.stack([torch.norm(p, norm_type) for p in grads]), norm_type)
return norm
@UDA.register_module()
class DACS(UDADecorator):
def __init__(self, **cfg):
super(DACS, self).__init__(**cfg)
self.local_iter = 0
self.max_iters = cfg['max_iters']
self.alpha = cfg['alpha']
self.pseudo_threshold = cfg['pseudo_threshold']
self.psweight_ignore_top = cfg['pseudo_weight_ignore_top']
self.psweight_ignore_bottom = cfg['pseudo_weight_ignore_bottom']
self.fdist_lambda = cfg['imnet_feature_dist_lambda']
self.fdist_classes = cfg['imnet_feature_dist_classes']
self.fdist_scale_min_ratio = cfg['imnet_feature_dist_scale_min_ratio']
self.enable_fdist = self.fdist_lambda > 0
self.mix = cfg['mix']
self.blur = cfg['blur']
self.color_jitter_s = cfg['color_jitter_strength']
self.color_jitter_p = cfg['color_jitter_probability']
self.debug_img_interval = cfg['debug_img_interval']
self.print_grad_magnitude = cfg['print_grad_magnitude']
self.share_src_backward = cfg['share_src_backward']
self.disable_mix_masks = cfg['disable_mix_masks']
assert self.mix == 'class'
self.debug_fdist_mask = None
self.debug_gt_rescale = None
self.class_probs = {}
ema_cfg = deepcopy(cfg['model'])
self.ema_model = build_detector(ema_cfg)
if self.enable_fdist:
self.imnet_model = build_detector(deepcopy(cfg['model']))
else:
self.imnet_model = None
self.map_pos_index_to_cid = {0: 11, 1: 12, 2: 13, 3: 14, 4: 15, 5: 16, 6: 17, 7: 18}
self.map_cid_to_pos_index = {11: 0, 12: 1, 13: 2, 14: 3, 15: 4, 16: 5, 17: 6, 18: 7}
self.thing_list = [11, 12, 13, 14, 15, 16, 17, 18]
self.label_divisor = 1000
self.label_divisor_target = 10000
def get_ema_model(self):
return get_module(self.ema_model)
def get_imnet_model(self):
return get_module(self.imnet_model)
def _init_ema_weights(self):
for param in self.get_ema_model().parameters():
param.detach_()
mp = list(self.get_model().parameters())
mcp = list(self.get_ema_model().parameters())
for i in range(0, len(mp)):
if not mcp[i].data.shape: # scalar tensor
mcp[i].data = mp[i].data.clone()
else:
mcp[i].data[:] = mp[i].data[:].clone()
def _update_ema(self, iter):
alpha_teacher = min(1 - 1 / (iter + 1), self.alpha)
for ema_param, param in zip(self.get_ema_model().parameters(), self.get_model().parameters()):
if not param.data.shape: # scalar tensor
ema_param.data = alpha_teacher * ema_param.data + (1 - alpha_teacher) * param.data
else:
ema_param.data[:] = alpha_teacher * ema_param[:].data[:] + (1 - alpha_teacher) * param[:].data[:]
def masked_feat_dist(self, f1, f2, mask=None):
feat_diff = f1 - f2
# mmcv.print_log(f'fdiff: {feat_diff.shape}', 'mmseg')
pw_feat_dist = torch.norm(feat_diff, dim=1, p=2)
# mmcv.print_log(f'pw_fdist: {pw_feat_dist.shape}', 'mmseg')
if mask is not None:
# mmcv.print_log(f'fd mask: {mask.shape}', 'mmseg')
pw_feat_dist = pw_feat_dist[mask.squeeze(1)]
# mmcv.print_log(f'fd masked: {pw_feat_dist.shape}', 'mmseg')
return torch.mean(pw_feat_dist)
def calc_feat_dist(self, img, gt, feat=None):
assert self.enable_fdist
with torch.no_grad():
self.get_imnet_model().eval()
feat_imnet, _ = self.get_imnet_model().extract_feat(img)
feat_imnet = [f.detach() for f in feat_imnet]
lay = -1
if self.fdist_classes is not None:
fdclasses = torch.tensor(self.fdist_classes, device=gt.device)
scale_factor = gt.shape[-1] // feat[lay].shape[-1]
gt_rescaled = downscale_label_ratio(gt, scale_factor, self.fdist_scale_min_ratio, self.num_classes, 255).long().detach()
fdist_mask = torch.any(gt_rescaled[..., None] == fdclasses, -1)
feat_dist = self.masked_feat_dist(feat[lay], feat_imnet[lay], fdist_mask)
self.debug_fdist_mask = fdist_mask
self.debug_gt_rescale = gt_rescaled
else:
feat_dist = self.masked_feat_dist(feat[lay], feat_imnet[lay])
feat_dist = self.fdist_lambda * feat_dist
feat_loss, feat_log = self._parse_losses({'loss_imnet_feat_dist': feat_dist})
feat_log.pop('loss', None)
return feat_loss, feat_log
def train_step(self, data_batch, optimizer, **kwargs):
optimizer.zero_grad()
log_vars = self(**data_batch)
optimizer.step()
log_vars.pop('loss', None) # remove the unnecessary 'loss'
outputs = dict(log_vars=log_vars, num_samples=len(data_batch['img_metas']))
return outputs
def forward_train(self, img, img_metas, gt_semantic_seg, # daformer args
gt_bboxes, gt_labels, gt_masks, # maskrcnn args
target_img, target_img_metas,
gt_panoptic_only_thing_classes,
max_inst_per_class,
): # daformer args
# [ 'gt_masks', 'target_img_metas', 'target_img']
log_vars = {}
batch_size = img.shape[0]
dev = img.device
# Init/update ema model
if self.local_iter == 0:
self._init_ema_weights()
# assert _params_equal(self.get_ema_model(), self.get_model())
if self.local_iter > 0:
self._update_ema(self.local_iter)
# assert not _params_equal(self.get_ema_model(), self.get_model())
# assert self.get_ema_model().training
means, stds = get_mean_std(img_metas, dev)
strong_parameters = {
'mix': None,
'color_jitter': random.uniform(0, 1),
'color_jitter_s': self.color_jitter_s,
'color_jitter_p': self.color_jitter_p,
'blur': random.uniform(0, 1) if self.blur else 0,
'mean': means[0].unsqueeze(0), # assume same normalization
'std': stds[0].unsqueeze(0)
}
# Train on source images
clean_losses = self.get_model().forward_train(img,
img_metas,
gt_semantic_seg,
return_feat=True,
gt_bboxes=gt_bboxes,
gt_labels=gt_labels,
gt_masks=gt_masks,
)
src_feat = clean_losses.pop('features')
clean_loss, clean_log_vars = self._parse_losses(clean_losses)
log_vars.update(clean_log_vars)
if not self.share_src_backward:
clean_loss.backward(retain_graph=self.enable_fdist)
if self.print_grad_magnitude:
params = self.get_model().backbone.parameters()
seg_grads = [ p.grad.detach().clone() for p in params if p.grad is not None ]
grad_mag = calc_grad_magnitude(seg_grads)
mmcv.print_log(f'Seg. Grad.: {grad_mag}', 'mmseg')
# ImageNet feature distance
if self.enable_fdist:
feat_loss, feat_log = self.calc_feat_dist(img, gt_semantic_seg, src_feat)
log_vars.update(add_prefix(feat_log, 'src'))
if self.share_src_backward:
clean_loss = clean_loss + feat_loss
else:
feat_loss.backward()
if self.print_grad_magnitude:
params = self.get_model().backbone.parameters()
fd_grads = [ p.grad.detach() for p in params if p.grad is not None ]
fd_grads = [g2 - g1 for g1, g2 in zip(seg_grads, fd_grads)]
grad_mag = calc_grad_magnitude(fd_grads)
mmcv.print_log(f'Fdist Grad.: {grad_mag}', 'mmseg')
# Shared source backward
if self.share_src_backward:
clean_loss.backward()
del src_feat, clean_loss
if self.enable_fdist:
del feat_loss
# Generate pseudo-label
for m in self.get_ema_model().modules():
if isinstance(m, _DropoutNd):
m.training = False
if isinstance(m, DropPath):
m.training = False
ema_logits = self.get_ema_model().encode_decode(target_img, target_img_metas)
ema_softmax = torch.softmax(ema_logits.detach(), dim=1)
pseudo_prob, pseudo_label = torch.max(ema_softmax, dim=1)
ps_large_p = pseudo_prob.ge(self.pseudo_threshold).long() == 1
ps_size = np.size(np.array(pseudo_label.cpu()))
pseudo_weight = torch.sum(ps_large_p).item() / ps_size
pseudo_weight = pseudo_weight * torch.ones(pseudo_prob.shape, device=dev)
if self.psweight_ignore_top > 0:
# Don't trust pseudo-labels in regions with potential
# rectification artifacts. This can lead to a pseudo-label
# drift from sky towards building or traffic light.
pseudo_weight[:, :self.psweight_ignore_top, :] = 0
if self.psweight_ignore_bottom > 0:
pseudo_weight[:, -self.psweight_ignore_bottom:, :] = 0
gt_pixel_weight = torch.ones((pseudo_weight.shape), device=dev)
# Apply mixing
mixed_img, mixed_lbl = [None] * batch_size, [None] * batch_size
mix_masks = get_class_masks(gt_semantic_seg)
if self.disable_mix_masks:
for i in range(batch_size):
mix_masks[i][:] = 0
assert mix_masks[i].sum() == 0, 'problem found'
for i in range(batch_size):
strong_parameters['mix'] = mix_masks[i]
mixed_img[i], mixed_lbl[i] = strong_transform(strong_parameters, data=torch.stack((img[i], target_img[i])), target=torch.stack((gt_semantic_seg[i][0], pseudo_label[i])))
_, pseudo_weight[i] = strong_transform(strong_parameters, target=torch.stack((gt_pixel_weight[i], pseudo_weight[i])))
mixed_img = torch.cat(mixed_img)
mixed_lbl = torch.cat(mixed_lbl)
# Train on mixed images
mixed_bboxes, mixed_labels, mixed_masks = None, None, None
mix_losses = self.get_model().forward_train(mixed_img,
img_metas,
mixed_lbl,
seg_weight=pseudo_weight,
return_feat=True,
gt_bboxes=mixed_bboxes,
gt_labels=mixed_labels,
gt_masks=mixed_masks,
)
mix_losses.pop('features')
mix_losses = add_prefix(mix_losses, 'mix')
mix_loss, mix_log_vars = self._parse_losses(mix_losses)
log_vars.update(mix_log_vars)
mix_loss.backward()
if self.local_iter % self.debug_img_interval == 0:
out_dir = os.path.join(self.train_cfg['work_dir'], 'class_mix_debug')
os.makedirs(out_dir, exist_ok=True)
vis_img = torch.clamp(denorm(img, means, stds), 0, 1)
vis_trg_img = torch.clamp(denorm(target_img, means, stds), 0, 1)
vis_mixed_img = torch.clamp(denorm(mixed_img, means, stds), 0, 1)
for j in range(batch_size):
rows, cols = 2, 5
fig, axs = plt.subplots( rows, cols, figsize=(3 * cols, 3 * rows), gridspec_kw={'hspace': 0.1, 'wspace': 0, 'top': 0.95, 'bottom': 0, 'right': 1, 'left': 0 }, )
subplotimg(axs[0][0], vis_img[j], 'Source Image')
subplotimg(axs[1][0], vis_trg_img[j], 'Target Image')
subplotimg(axs[0][1], gt_semantic_seg[j], 'Source Seg GT', cmap='cityscapes')
subplotimg(axs[1][1], pseudo_label[j], 'Target Seg (Pseudo) GT', cmap='cityscapes')
subplotimg(axs[0][2], vis_mixed_img[j], 'Mixed Image')
subplotimg(axs[1][2], mix_masks[j][0], 'Domain Mask', cmap='gray')
# subplotimg(axs[0][3], pred_u_s[j], "Seg Pred", cmap="cityscapes")
subplotimg(axs[1][3], mixed_lbl[j], 'Seg Targ', cmap='cityscapes')
subplotimg(axs[0][3], pseudo_weight[j], 'Pseudo W.', vmin=0, vmax=1)
if self.debug_fdist_mask is not None:
subplotimg(axs[0][4], self.debug_fdist_mask[j][0], 'FDist Mask', cmap='gray')
if self.debug_gt_rescale is not None:
subplotimg(axs[1][4], self.debug_gt_rescale[j], 'Scaled GT', cmap='cityscapes')
for ax in axs.flat:
ax.axis('off')
plt.savefig(os.path.join(out_dir, f'{(self.local_iter + 1):06d}_{j}.png'))
plt.close()
self.local_iter += 1
return log_vars