-
Notifications
You must be signed in to change notification settings - Fork 35
/
convert_report_to_csv.py
96 lines (80 loc) · 2.99 KB
/
convert_report_to_csv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import pandas as pd
import re
from glob import glob
import argparse
import os
def get_data(report):
class_wise_acc_regex = r'\[[\d.\se\-\+(\\n)]*\]'
oa_aa_kappa_regex = r'([-+]?[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?\s±\s[-+]?[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?)'
result = {}
x = re.findall(oa_aa_kappa_regex, report)
result['oa'] = x[0][0]
result['aa'] = x[1][0]
result['kappa'] = x[2][0]
result['oa'] = "{:.2f}".format(
float(result['oa'].split(' ± ')[0]) * 100) + ' ± ' + "{:.3f}".format(
float(result['oa'].split(' ± ')[1]))
result['aa'] = "{:.2f}".format(
float(result['aa'].split(' ± ')[0]) * 100) + ' ± ' + "{:.3f}".format(
float(result['aa'].split(' ± ')[1]))
result['kappa'] = "{:.4f}".format(float(
result['kappa'].split(' ± ')[0])) + ' ± ' + "{:.3f}".format(
float(result['kappa'].split(' ± ')[1]))
x = re.findall(class_wise_acc_regex, report)
result['class_mean'] = x[0][1:-1].split()
result['class_std'] = x[1][1:-1].split()
result['class_wise'] = [
"{:.2f}".format(float(m) * 100) + ' ± ' + "{:.3f}".format(float(n))
for m, n in zip(result['class_mean'], result['class_std'])
]
return result
def main(dataset, search_path, output_file):
all_reports = glob(search_path + '/*' + dataset + '*.txt')
no_of_labels = 0
dataframe_dict = {}
for report in all_reports:
print('Processing...', report)
column_name = os.path.basename(report)[:-4]
with open(report) as f:
report_content = f.read()
result = get_data(report_content)
dataframe_dict[column_name] = result['class_wise'] + [result['oa']] + [
result['aa']
] + [result['kappa']]
no_of_labels = len(result['class_wise'])
label_list = [str(i)
for i in range(1, no_of_labels + 1)] + ['oa', 'aa', 'kappa']
df = pd.DataFrame(dataframe_dict)
df = df.reindex(sorted(df.columns), axis=1)
df.insert(0, 'label', label_list)
print('Saving...', dataset, 'report.')
if output_file is not None:
df.to_csv(output_file, index=False)
else:
if not os.path.exists('csv_reports'):
os.makedirs('csv_reports')
df.to_csv(
os.path.join('csv_reports', dataset + '_report.csv'), index=False)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description='Convert Code Generated Report to CSV.')
parser.add_argument(
'-d',
'--dataset_name',
dest='dataset',
required=True,
help="Name of dataset to search.")
parser.add_argument(
'-r',
'--root_dir',
dest='root_dir',
default='./*/report',
help="Directories to search for the report files.")
parser.add_argument(
'-o',
'--output',
dest='output',
default=None,
help="Output name to save csv.")
args = parser.parse_args()
main(args.dataset, args.root_dir, args.output)