-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathinference.py
193 lines (150 loc) · 6.74 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import tensorflow as tf
import os
import time
import numpy as np
import pickle
from scipy import interpolate
from constant import const
from models import prediction_networks_dict
from utils.dataloaders.test_loader import DataTemporalGtLoader
from utils.util import psnr_error, load
import evaluate
os.environ['CUDA_DEVICES_ORDER'] = "PCI_BUS_ID"
os.environ['CUDA_VISIBLE_DEVICES'] = const.GPUS[0]
dataset_name = const.DATASET
train_folder = const.TRAIN_FOLDER
test_folder = const.TEST_FOLDER
frame_mask = const.FRAME_MASK
pixel_mask = const.PIXEL_MASK
k_folds = const.K_FOLDS
kth = const.KTH
interval = const.INTERVAL
batch_size = const.BATCH_SIZE
iterations = const.ITERATIONS
num_his = const.NUM_HIS
height, width = const.HEIGHT, const.WIDTH
prednet = prediction_networks_dict[const.PREDNET]
evaluate_name = const.EVALUATE
margin = const.MARGIN
lam = const.LAMBDA
summary_dir = const.SUMMARY_DIR
snapshot_dir = const.SNAPSHOT_DIR
psnr_dir = const.PSNR_DIR
print(const)
# define dataset
# noinspection PyUnboundLocalVariable
with tf.name_scope('dataset'):
video_clips_tensor = tf.placeholder(shape=[1, (num_his + 1), height, width, 3], dtype=tf.float32)
inputs = video_clips_tensor[:, 0:num_his, ...]
frame_gts = video_clips_tensor[:, -1, ...]
# define training generator function
with tf.variable_scope('generator', reuse=None):
outputs, features, _ = prednet(inputs=inputs, use_decoder=True)
psnr_tensor = psnr_error(outputs, frame_gts)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
# dataset
data_loader = DataTemporalGtLoader(dataset=dataset_name, folder=test_folder, k_folds=k_folds, kth=kth,
frame_mask_file=frame_mask, pixel_mask_file=pixel_mask,
resize_height=height, resize_width=width)
video_info = data_loader.test_videos_info
frame_masks = data_loader.get_frame_mask
num_videos = len(video_info)
# initialize weights
sess.run(tf.global_variables_initializer())
print('Init global successfully!')
restore_var = [v for v in tf.global_variables()]
loader = tf.train.Saver(var_list=restore_var)
def inference_func(ckpt, dataset_name, evaluate_name):
load(loader, sess, ckpt)
psnr_records = []
total = 0
timestamp = time.time()
if const.INTERPOLATION:
vol_size = num_his + 1
for v_id, (video_name, video) in enumerate(video_info.items()):
length = video['length']
total += length
gts = frame_masks[v_id]
x_ids = np.arange(0, length, vol_size)
x_ids[-1] = length - 1
psnrs_ids = np.empty(shape=(len(x_ids),), dtype=np.float32)
for i, t in enumerate(x_ids):
if t == length - 1:
start = length - vol_size
end = length
else:
start = t
end = t + vol_size
video_clip = data_loader.get_video_clip(video_name, start, end)
psnr = sess.run(psnr_tensor, feed_dict={video_clips_tensor: video_clip[np.newaxis, ...]})
psnrs_ids[i] = psnr
print('video = {} / {}, i = {} / {}, psnr = {:.6f}, gt = {}'.format(
video_name, num_videos, t, length, psnr, gts[end - 1]))
# interpretation
inter_func = interpolate.interp1d(x_ids, psnrs_ids)
ids = np.arange(0, length)
psnrs = inter_func(ids)
psnr_records.append(psnrs)
else:
for v_id, (video_name, video) in enumerate(video_info.items()):
length = video['length']
total += length
psnrs = np.empty(shape=(length,), dtype=np.float32)
gts = frame_masks[v_id]
for i in range(num_his, length):
video_clip = data_loader.get_video_clip(video_name, i - num_his, i + 1)
psnr = sess.run(psnr_tensor, feed_dict={video_clips_tensor: video_clip[np.newaxis, ...]})
psnrs[i] = psnr
print('video = {} / {}, i = {} / {}, psnr = {:.6f}, gt = {}'.format(
video_name, num_videos, i, length, psnr, gts[i]))
psnrs[0:num_his] = psnrs[num_his]
psnr_records.append(psnrs)
result_dict = {'dataset': dataset_name, 'psnr': psnr_records, 'diff_mask': [], 'frame_mask': frame_masks}
used_time = time.time() - timestamp
print('total time = {}, fps = {}'.format(used_time, total / used_time))
# TODO specify what's the actual name of ckpt.
pickle_path = os.path.join(psnr_dir, os.path.split(ckpt)[-1])
with open(pickle_path, 'wb') as writer:
pickle.dump(result_dict, writer, pickle.HIGHEST_PROTOCOL)
results = evaluate.evaluate(evaluate_name, pickle_path)
print(results)
if os.path.isdir(snapshot_dir):
def check_ckpt_valid(ckpt_name):
is_valid = False
ckpt = ''
if ckpt_name.startswith('model.ckpt-'):
ckpt_name_splits = ckpt_name.split('.')
ckpt = str(ckpt_name_splits[0]) + '.' + str(ckpt_name_splits[1])
ckpt_path = os.path.join(snapshot_dir, ckpt)
if os.path.exists(ckpt_path + '.index') and os.path.exists(ckpt_path + '.meta') and \
os.path.exists(ckpt_path + '.data-00000-of-00001'):
is_valid = True
return is_valid, ckpt
def scan_psnr_folder():
tested_ckpt_in_psnr_sets = set()
for test_psnr in os.listdir(psnr_dir):
tested_ckpt_in_psnr_sets.add(test_psnr)
return tested_ckpt_in_psnr_sets
def scan_model_folder():
saved_models = set()
for ckpt_name in os.listdir(snapshot_dir):
is_valid, ckpt = check_ckpt_valid(ckpt_name)
if is_valid:
saved_models.add(ckpt)
return saved_models
tested_ckpt_sets = scan_psnr_folder()
while True:
all_model_ckpts = scan_model_folder()
new_model_ckpts = all_model_ckpts - tested_ckpt_sets
for ckpt_name in new_model_ckpts:
# inference
ckpt = os.path.join(snapshot_dir, ckpt_name)
inference_func(ckpt, dataset_name, evaluate_name)
tested_ckpt_sets.add(ckpt_name)
print('waiting for models...')
evaluate.evaluate('compute_auc', psnr_dir)
time.sleep(300)
else:
inference_func(snapshot_dir, dataset_name, evaluate_name)