-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
162 lines (120 loc) · 5.86 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import torch
import argparse
import random
import numpy as np
import os
import time
from configs.defaults import get_cfg_defaults
from data.dataset import load_dataset
from utils.logger import setup_logger
from models.model import CAT
from utils.preprocess import frames_preprocess
from utils.loss import compute_cls_loss, compute_seq_loss
def train():
model = CAT(num_class=cfg.DATASET.NUM_CLASS,
num_clip=cfg.DATASET.NUM_CLIP,
dim_embedding=cfg.MODEL.DIM_EMBEDDING,
pretrain=cfg.MODEL.PRETRAIN,
dropout=cfg.TRAIN.DROPOUT,
use_TE=cfg.MODEL.TRANSFORMER,
use_SeqAlign=cfg.MODEL.ALIGNMENT,
freeze_backbone=cfg.TRAIN.FREEZE_BACKBONE).to(device)
for name, param in model.named_parameters():
print(name, param.nelement())
logger.info('Model have {} paramerters in total'.format(sum(x.numel() for x in model.parameters())))
optimizer = torch.optim.Adam(model.parameters(), lr=cfg.TRAIN.LR, weight_decay=0.01)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=cfg.TRAIN.MAX_EPOCH, eta_min=cfg.TRAIN.LR * 0.01)
# Load checkpoint
start_epoch = 0
if args.load_path and os.path.isfile(args.load_path):
checkpoint = torch.load(args.load_path)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
start_epoch = checkpoint['epoch']
logger.info('-> Loaded checkpoint %s (epoch: %d)' % (args.load_path, start_epoch))
# Mulitple gpu
if torch.cuda.device_count() > 1 and torch.cuda.is_available():
logger.info('Let us use %d GPUs' % torch.cuda.device_count())
model = torch.nn.DataParallel(model)
model.train()
# Create checkpoint dir
if cfg.TRAIN.SAVE_PATH:
checkpoint_dir = os.path.join(cfg.TRAIN.SAVE_PATH, 'save_models')
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
# Start training
start_time = time.time()
for epoch in range(start_epoch, cfg.TRAIN.MAX_EPOCH):
loss_per_epoch = 0
num_true_pred = 0
for iter, sample in enumerate(train_loader):
frames1 = frames_preprocess(sample['clips1'][0]).to(device, non_blocking=True)
frames2 = frames_preprocess(sample['clips2'][0]).to(device, non_blocking=True)
labels1 = sample['labels1'].to(device, non_blocking=True)
labels2 = sample['labels2'].to(device, non_blocking=True)
pred1, seq_features1 = model(frames1)
pred2, seq_features2 = model(frames2)
loss_cls = compute_cls_loss(pred1, labels1) + compute_cls_loss(pred2, labels2)
loss_seq = compute_seq_loss(seq_features1, seq_features2)
loss = loss_cls + cfg.MODEL.SEQ_LOSS_COEF * loss_seq
if (iter + 1) % 10 == 0:
logger.info( 'Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch + 1, cfg.TRAIN.MAX_EPOCH, iter + 1, len(train_loader), loss.item()))
loss_per_epoch += loss.item()
num_true_pred += torch.sum(torch.argmax(pred1, dim=-1) == labels1) + torch.sum(torch.argmax(pred2, dim=-1) == labels2)
# Update weights
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Log training statistics
loss_per_epoch /= (iter + 1)
accuracy = num_true_pred / (cfg.DATASET.NUM_SAMPLE * 2)
logger.info('Epoch [{}/{}], LR: {:.6f}, Accuracy: {:.4f}, Loss: {:.4f}'
.format(epoch + 1, cfg.TRAIN.MAX_EPOCH, optimizer.param_groups[0]['lr'], accuracy, loss_per_epoch))
# Save model every X epochs
if (epoch + 1) % cfg.MODEL.SAVE_EPOCHS == 0:
save_dict = {'epoch': epoch + 1, # after training one epoch, the start_epoch should be epoch+1
'optimizer_state_dict': optimizer.state_dict(),
'loss': loss.item(),
}
try: # with nn.DataParallel() the net is added as a submodule of DataParallel
save_dict['model_state_dict'] = model.module.state_dict()
except:
save_dict['model_state_dict'] = model.state_dict()
save_name = 'epoch_' + str(epoch + 1) + '.tar'
torch.save(save_dict, os.path.join(checkpoint_dir, save_name))
logger.info('Save ' + os.path.join(checkpoint_dir, save_name) + ' done!')
# Learning rate decay
scheduler.step()
end_time = time.time()
duration = end_time - start_time
hour = duration // 3600
min = (duration % 3600) // 60
sec = duration % 60
logger.info('Training cost %dh%dm%ds' % (hour, min, sec))
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--config', default='configs/train_resnet_config.yml', help='config file path')
parser.add_argument('--save_path', default=None, help='path to save models and log')
parser.add_argument('--load_path', default=None, help='path to load the model')
parser.add_argument('--log_name', default='train_log', help='log name')
args = parser.parse_args()
return args
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
if __name__ == "__main__":
args = parse_args()
cfg = get_cfg_defaults()
if args.config:
cfg.merge_from_file(args.config)
setup_seed(cfg.TRAIN.SEED)
use_cuda = cfg.TRAIN.USE_CUDA and torch.cuda.is_available()
device = torch.device('cuda' if use_cuda else 'cpu')
logger_path = os.path.join(cfg.TRAIN.SAVE_PATH, 'logs')
logger = setup_logger('Sequence Verification', logger_path, args.log_name, 0)
logger.info('Running with config:\n{}\n'.format(cfg))
train_loader = load_dataset(cfg)
train()