-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimple_greedy_ae.py
288 lines (253 loc) · 9.66 KB
/
simple_greedy_ae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
"""A simple implementation of a greedy transition-based parser"""
import random
from _perceptron import Perceptron
from taggers import PerceptronTagger
import os
from os import path
import time
SHIFT = 0; REDUCE = 1; LEFT = 2;
MOVES = (SHIFT, REDUCE, LEFT)
class DefaultList(list):
"""A list that returns a default value if index out of bounds."""
def __init__(self, default=None):
self.default = default
list.__init__(self)
def __getitem__(self, index):
try:
return list.__getitem__(self, index)
except IndexError:
return self.default
class State(object):
def __init__(self, n):
self.i = 1
self.n = n
self.stack = DefaultList(0)
self.heads = [None] * (n-1)
self.lefts = []
self.rights = []
for i in range(n+1):
self.lefts.append(DefaultList(0))
self.rights.append(DefaultList(0))
self.stack.append(self.i)
self.i += 1
def transition(self, move):
assert move in MOVES
s0 = self.stack[-1]
s1 = self.stack[-2]
n0 = self.i
if move == SHIFT:
self.heads[n0] = s0
self.rights[s0].append(n0)
self.stack.append(n0)
self.i += 1
elif move == REDUCE:
self.stack.pop()
elif move == LEFT:
if s1 != 0:
self.rights[s1].pop()
self.heads[s0] = n0
self.lefts[n0].append(s0)
self.stack.pop()
if not self.stack and (self.i + 1) < self.n:
self.stack.append(self.i)
self.i += 1
def context(self):
stack = self.stack
n0 = self.i
s0 = stack[-1]
s0l = self.lefts[s0]
s0r = self.rights[s0]
n0l = self.lefts[self.i]
return (stack[-3], self.stack[-2], s0l[-1], s0l[-2], s0, s0r[-2], s0r[-1],
n0l[-1], n0l[-2], n0, n0+1, n0+2)
def oracle(self, gold):
n0 = self.i
s0 = self.stack[-1]
if gold[n0] == s0:
return [SHIFT]
elif gold[s0] == n0:
return [LEFT]
invalid = set()
if (self.i + 1) == self.n:
invalid.add(SHIFT)
if gold[s0] == self.heads[s0]:
invalid.add(LEFT)
# If there are any dependencies between n0 and the stack,
# pushing n0 will lose them.
for w in self.stack[:-1]:
if gold[w] == n0 or gold[n0] == w:
invalid.add(SHIFT)
break
# If there are any dependencies between s0 and the buffer, popping
# s0 will lose them.
for w in range(self.i+1, self.n):
if gold[w] == s0 or gold[s0] == w:
invalid.add(LEFT)
invalid.add(REDUCE)
break
return [m for m in MOVES if m not in invalid]
class Parser:
def __init__(self, model_dir):
self.model = Perceptron()
self.tagger = PerceptronTagger(path.join(model_dir, 'tagger'))
def parse(self, words, tags):
state = State(len(words))
while state.stack or (state.i + 1) < state.n:
features = extract_features(words, tags, state)
scores = self.model.score(features)
moves = MOVES if (state.i + 1) < state.n else [LEFT, REDUCE]
guess = max(moves, key=lambda move: scores[move])
state.transition(guess)
return tags, state.heads
def train_one(self, itn, words, gold_tags, gold_heads):
s = State(len(words))
c = 0
while s.stack or (s.i + 1) < s.n:
features = extract_features(words, gold_tags, s)
scores = self.model.score(features)
moves = MOVES if (s.i + 1) < s.n else [LEFT, REDUCE]
gold_moves = s.oracle(gold_heads)
guess = max(moves, key=lambda move: scores[move])
best = max(gold_moves, key=lambda move: scores[move])
self.model.update(best, guess, features)
s.transition(guess)
c += guess == best
return c
def train(self, sentences, nr_iter=15):
total = 0
for itn in range(nr_iter):
corr = 0; total = 0
random.shuffle(sentences)
for words, gold_tags, gold_parse, gold_label in sentences:
corr += self.train_one(itn, words, gold_tags, gold_parse)
total += (len(words) - 3) * 2
print corr, total, float(corr) / float(total)
self.model.average_weights()
def extract_features(words, tags, state):
features = {}
# Setup
s2, s1, s0L1, s0L2, s0, s0R1, s0R2, n0L1, n0L2, n0, n1, n2 = state.context()
# Word features for the above token indices
Wn0 = words[n0]; Wn1 = words[n1]; Wn2 = words[n2]
Ws0 = words[s0]; Ws1 = words[s1]; Ws2 = words[s2]
Wn0L1 = words[n0L1]; Wn0L2 = words[n0L2]
Ws0L1 = words[s0L1]; Ws0L2 = words[s0L2]
Ws0R1 = words[s0R1]; Ws0R2 = words[s0R2]
# Part-of-speech tag features
Tn0 = tags[n0]; Tn1 = tags[n1]; Tn2 = tags[n2]
Ts0 = tags[s0]; Ts1 = tags[s1]; Ts2 = tags[s2]
Tn0L1 = tags[n0L1]; Tn0L2 = tags[n0L2]
Ts0L1 = tags[s0L1]; Ts0L2 = tags[s0L2]
Ts0R1 = tags[s0R1]; Ts0R2 = tags[s0R2]
# Cap numeric features at 5
# Valency (number of children) features
Vn0L = len(state.lefts[n0])
Vs0L = len(state.lefts[s0])
Vs0R = len(state.rights[s0])
# String-distance
Ds0n0 = min((n0 - s0, 5)) if s0 != 0 else 0
features['bias'] = 1
w = (Wn0, Wn1, Wn2, Ws0, Ws1, Ws2, Wn0L1, Wn0L2, Ws0L1, Ws0L2, Ws0R1, Ws0R2)
t = (Tn0, Tn1, Tn2, Ts0, Ts1, Ts2, Tn0L1, Tn0L2, Ts0L1, Ts0L2, Ts0R1, Ts0R2)
for code, templates in zip(('w', 't'), (w, t)):
for i, value in enumerate(templates):
if value:
features['%s%d %s' % (code, i, value)] = 1
wt = ((Wn0, Tn0), (Wn1, Tn1), (Wn2, Tn2), (Ws0, Ts0))
for i, (word, tag) in enumerate(wt):
if word or tag:
features['wt-%d %s %s' % (i, word, tag)] = 1
features['ww %s %s' % (Ws0, Wn0)] = 1
features['wn0tn0-ws0 %s/%s %s' % (Wn0, Tn0, Ws0)] = 1
features['wn0tn0-ts0 %s/%s %s' % (Wn0, Tn0, Ts0)] = 1
features['ws0ts0-wn0 %s/%s %s' % (Ws0, Ts0, Wn0)] = 1
features['ws0-ts0 tn0 %s/%s %s' % (Ws0, Ts0, Tn0)] = 1
features['wt-wt %s/%s %s/%s' % (Ws0, Ts0, Wn0, Tn0)] = 1
features['tt s0=%s n0=%s' % (Ts0, Tn0)] = 1
features['tt n0=%s n1=%s' % (Tn0, Tn1)] = 1
trigrams = ((Tn0, Tn1, Tn2), (Ts0, Tn0, Tn1), (Ts0, Ts1, Tn0),
(Ts0, Ts0L1, Tn0), (Ts0, Ts0R1, Tn0), (Ts0, Tn0, Tn0L1),
(Ts0, Ts0L1, Ts0L2), (Ts0, Ts0R1, Ts0R2), (Tn0, Tn0L1, Tn0L2),
(Ts0, Ts1, Ts1))
for i, (t1, t2, t3) in enumerate(trigrams):
if t1 or t2 or t3:
features['ttt-%d %s %s %s' % (i, t1, t2, t3)] = 1
vw = ((Ws0, Vs0R), (Ws0, Vs0L), (Wn0, Vn0L))
vt = ((Ts0, Vs0R), (Ts0, Vs0L), (Tn0, Vn0L))
d = ((Ws0, Ds0n0), (Wn0, Ds0n0), (Ts0, Ds0n0), (Tn0, Ds0n0),
('t' + Tn0+Ts0, Ds0n0), ('w' + Wn0+Ws0, Ds0n0))
for i, (w_t, v_d) in enumerate(vw + vt + d):
if w_t or v_d:
features['val/d-%d %s %d' % (i, w_t, v_d)] = 1
return features
def read_conll(loc):
for sent_str in open(loc).read().strip().split('\n\n'):
lines = [line.split() for line in sent_str.split('\n')]
words = DefaultList(''); tags = DefaultList('')
heads = [None]; labels = [None]
for i, (word, pos, head, label) in enumerate(lines):
words.append(intern(normalize(word)))
tags.append(intern(pos))
heads.append(int(head) + 1 if head != '-1' else len(lines) + 1)
labels.append(label)
pad_tokens(words); pad_tokens(tags)
heads.append(None); labels.append(None)
yield words, tags, heads, labels
def normalize(word):
if '-' in word and word[0] != '-':
return '!HYPHEN'
elif word.isdigit() and len(word) == 4:
return '!YEAR'
elif word[0].isdigit():
return '!DIGITS'
else:
return word.lower()
def pad_tokens(tokens):
tokens.insert(0, '<start>')
tokens.append('ROOT')
def read_pos(loc):
for line in open(loc):
if not line.strip():
continue
words = DefaultList('')
tags = DefaultList('')
for token in line.split():
if not token:
continue
word, tag = token.rsplit('/', 1)
words.append(normalize(word))
tags.append(tag)
pad_tokens(words); pad_tokens(tags)
yield words, tags
def main(model_dir, train_loc, heldout_in, heldout_gold):
if not os.path.exists(model_dir):
os.mkdir(model_dir)
input_sents = list(read_pos(heldout_in))
parser = Parser(model_dir)
sentences = list(read_conll(train_loc))
parser.train(sentences, nr_iter=15)
parser.model.save('/tmp/parser.pickle')
c = 0
t = 0
gold_sents = list(read_conll(heldout_gold))
t1 = time.time()
for (words, tags), (_, _, gold_heads, gold_labels) in zip(input_sents, gold_sents):
_, heads = parser.parse(words, tags)
for i, w in list(enumerate(words))[1:-1]:
if gold_labels[i] in ('P', 'punct'):
continue
if heads[i] == gold_heads[i]:
c += 1
t += 1
t2 = time.time()
print 'Parsing took %0.3f ms' % ((t2-t1)*1000.0)
print c, t, float(c)/t
if __name__ == '__main__':
import sys
import cProfile
import pstats
main(sys.argv[1], sys.argv[2], sys.argv[3], sys.argv[4])
#cProfile.runctx('main(sys.argv[1], sys.argv[2], sys.argv[3])', globals(),
#$ locals(), "Profile.prof")
#s = pstats.Stats("Profile.prof")
#s.strip_dirs().sort_stats("time").print_stats()