-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelpers.py
150 lines (125 loc) · 6.12 KB
/
helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
from bokeh.plotting import figure
from bokeh.layouts import layout
import sys
from bokeh.models import Whisker, ColumnDataSource, Slope, Span, Row, Column
from bokeh.io import show, output_notebook, export_svgs
from bokeh.core.properties import value
import xlwings
import pandas
import numpy as np
import numpy as np
import pandas as pd
from bokeh.models import LabelSet, ColumnDataSource
from bokeh.palettes import Category10_10
from bokeh.io import export_svgs
from bokeh.io import export_png
def save(obj, filename):
backend = obj.output_backend
obj.output_backend = "svg"
export_png(obj, filename + ".png", width=2000, height=2000)
obj.output_backend = backend
def export_as_svg(figure, name):
if isinstance(figure, Row) or isinstance(figure, Column):
for i, p in enumerate(figure.children):
export_as_svg(p, name+'.'+str(i))
return
backend = figure.output_backend
figure.output_backend = 'svg'
figure.toolbar_location=None
export_svgs(figure, filename=name+'.svg')
figure.output_backend = backend
def get_app():
if len(xlwings.apps) > 1:
print('Too many excel applications open, i can only handle one, please close the other ones.')
elif len(xlwings.apps) < 1:
print('No excel open, please open the excel sheet.')
app = list(xlwings.apps)[0]
return app
def get_analysisbook(app):
candidates = []
for book in app.books:
sheets = [sheet.name for sheet in book.sheets]
if "Set Up" in sheets and "Genes" in sheets:
candidates.append(book)
analysisbook=book
if len(candidates) > 1:
print('Found too many analysis books, aborting.')
sys.exit(-1)
if len(candidates) == 0:
print('Found no analysis book, aborting.')
sys.exit(-1)
return analysisbook
def map_show(s):
try:
float(s)
return ''
except:
return s
def plot_data(data, conditions, xaxis=None, title=None, colors={}, text_conditions=["Cell Line",'Density','Collection']):
#this is where we define the colors for each condition google color picker (hex codes)
# Prepare Data for plotting
# Put all repetitions together
x = np.stack((data['R1'], data['R2'], data['R3']))#identifies the replicates
data.loc[:, "mean"] = np.nanmean(x, axis=0)#takes the mean ignoring empty values
data.loc[:,"var"] = np.nanstd(x, axis=0) #standard deviation ignoring empty values (to change look up numpy library for your calvulations)
data.loc[:,"mean-var"] = data["mean"] - data["var"]#calculate the bottom of the error bar
data.loc[:,"mean+var"] = data["mean"] + data["var"]#calcualte the top of the error bar
if xaxis is None:
xaxis= data["Sample"]#takes all of the samples
WIDTH = 900
source = ColumnDataSource(data)#puts data so the library works
p = figure( #makes the figure,
x_range=xaxis, #generates the xaxis
width=WIDTH, #width of overall plot where you change it
height=200, #height of over all greaph where you change it
title=title,)#this you change when calling the function
#puts in the individual data points
p.circle(source=source, x="Sample", y="R1",fill_color="black",line_color="black")
p.circle(source=source, x="Sample", y="R2",fill_color="black",line_color="black")
p.circle(source=source, x="Sample", y="R3",fill_color="black",line_color="black")
#this makese the verticle bars of the graph
p.vbar(x="Sample", #defines what to take at x-coordinate
top="mean",#determines where the top of the the bar is
bottom=0, #defines where the bottom of the bar is
width=0.6, #defines the width of the bar
source=source, #defines the source of the bars for samples and mean and all the things
fill_alpha=0.5, #fill of the bar, opaqueness in percent 0-1
fill_color="black", #color of the fill of the bar
line_color="black")#color of the outline of the box
p.add_layout(
Whisker(source=source, base="Sample", upper="mean+var", lower="mean-var")#this adds the error bars
)
p.min_border_left = 100
p.yaxis.major_label_text_font_size='18pt'
p.yaxis.major_label_text_font_style='bold'
p.yaxis.major_label_text_color='black'
p.yaxis.ticker.desired_num_ticks = 3
pp = figure(x_range=p.x_range, #the xrange of the second plot is equal to the x range of the first
width=WIDTH, #width of the second plot is the same as the width of the first plot
height=25*len(conditions), #height of the figure is 25* the number of the conditons
toolbar_location=None, #disabel tool bar
y_range=conditions)#on the y axis put the conditions in the default position google how to change if you want
for cond in conditions:#this mathches conditions to a color
if cond in text_conditions:#this is where we add conditions that text should be written
labels = LabelSet(x='Sample', y=value(cond), text=cond, source=ColumnDataSource(
data[data[cond].notnull()]
), text_font_size='6pt', text_align='center')
pp.add_layout(labels)
else:#this for plus minus conditions
pp.rect(x="Sample", #makesthe x coordinates the sample
y=value(cond), #defines y coordinates
width=0.8, #defines the width oght the box 0-1 is the % of the sample area the box takes up (centered)
height=0.8, #defines the height same as the width
color=colors[cond], #defines the color based on above
source=data[(data[cond] == '+') | (data[cond] == ' +')] )#if the there is the + in the data make box
#this makes it so none of the axis lines and grids exist on the second plot
pp.xaxis.axis_label=None
pp.xaxis.visible=False
pp.yaxis.axis_line_alpha = 0
pp.grid.grid_line_color = None
pp.outline_line_color = None
pp.min_border_left = 100
pp.yaxis.major_label_text_font_size='18pt'
pp.yaxis.major_label_text_font_style='bold'
pp.yaxis.major_label_text_color='black'
return layout([p, pp])