-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
220 lines (170 loc) · 7.02 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
"""Main script for ADDA."""
import sys; sys.path.append("../_EXTRAS")
import matplotlib
matplotlib.use('Agg')
import torch
import argparse
import pandas as pd
import numpy as np
import random
import misc as ms
import experiments
from addons import vis
from addons import pretty_plot
import train
if __name__ == '__main__':
# SEE IF CUDA IS AVAILABLE
assert torch.cuda.is_available()
print("CUDA: %s" % torch.version.cuda)
print("Pytroch: %s" % torch.__version__)
parser = argparse.ArgumentParser()
parser.add_argument('-e','--expList', nargs="+", default=None)
parser.add_argument('-b','--borgy', default=0, type=int)
parser.add_argument('-br','--borgy_running', default=0, type=int)
parser.add_argument('-m','--mode', default="train")
parser.add_argument('-rs','--reset_src', default=0, type=int)
parser.add_argument('-rt','--reset_tgt', default=0, type=int)
parser.add_argument('-g','--gpu', type=int)
parser.add_argument('-s','--summary', type=int, default=0)
parser.add_argument('-c','--configList', nargs="+",
default=None)
parser.add_argument('-l','--lossList', nargs="+",
default=None)
parser.add_argument('-d','--datasetList', nargs="+",
default=None)
parser.add_argument('-metric','--metricList', nargs="+",
default=None)
parser.add_argument('-model','--modelList', nargs="+",
default=None)
parser.add_argument('-run','--plot_run', default=None, type=int)
args = parser.parse_args()
ms.set_gpu(args.gpu)
plot_run = args.plot_run
# init random seed
# init_random_seed(10)
results = {}
pp_main = pretty_plot.PrettyPlot(ratio=0.5,
figsize=(5,4),
legend_type="line",
yscale="linear",
subplots=(1, 1),
shareRowLabel=True)
#for exp_name in args.expList:
#exp_name = 'indianSrc2indianTgt'
exp_name = 'paviaSrc2paviaTgt'
#exp_name = 'shSrc2shTgt'
#exp_name = 'indianTgt'
#exp_name = 'paviaTgt'
#exp_name = 'shTgt'
#exp_name = 'indianSrc_indianTgt'
#exp_name = 'paviaSrc_paviaTgt'
#exp_name = 'shSrc_shTgt'
N_Runs = 10
if plot_run is not None:
N_Runs = 1
for run in range(N_Runs):
if plot_run is not None:
run = plot_run
exp_dict = experiments.get_experiment_dict(args, exp_name)
exp_dict["reset_src"] = args.reset_src
exp_dict["reset_tgt"] = args.reset_tgt
exp_dict['run'] = run
##SET SEED
# np.random.seed(100)
# random.seed(100)
# torch.manual_seed(100)
# torch.cuda.manual_seed_all(100)
history = ms.load_history(exp_dict)
# Main options
if args.mode == "test_model":
exp_dict['sample_already'] = True
results[run] = ms.test_latest_model_bing(exp_dict, verbose=1)
elif args.mode == "train":
train.train(exp_dict)
if args.mode == "copy_models":
results[exp_name] = ms.copy_models(exp_dict, path_dst="{}/".format(exp_name))
# MISC
if args.mode == "plot_src":
src_losses = np.array(pd.DataFrame(history["src_train"])["loss"])
src_epochs = np.array(pd.DataFrame(history["src_train"])["epoch"])
pp_main.add_yxList(y_vals=src_losses[1:101],
x_vals=src_epochs[1:101],
label=exp_name.split("2")[0].upper().replace("BIG",""),
converged=None)
if args.mode == "plot_tgt":
tgt_acc = np.array(pd.DataFrame(history["tgt_train"])["acc_tgt"])
src_epochs = np.array(pd.DataFrame(history["tgt_train"])["epoch"])
pp_main.add_yxList(y_vals=tgt_acc[1:101],
x_vals=src_epochs[1:101],
label=exp_name.split("2")[1].upper().replace("BIG",""),
converged=None)
# vis.visEmbed(exp_dict)
if args.mode == "vis":
vis.visEmbed(exp_dict)
elif args.mode == "summary":
summary = pd.DataFrame(history["tgt_train"][1:])["acc_tgt"]
print(summary.describe())
elif args.mode == "acc_tgt":
summary = pd.DataFrame(history["tgt_train"][1:200])["acc_tgt"]
print(summary)
elif args.mode == "max":
try:
summary = pd.DataFrame(history["tgt_train"][1:])["acc_tgt"]
results[exp_name] = summary.max()
except:
print("{} skipped...".format(exp_name))
print(pd.Series(results))
# Train Source
if args.mode == "plot_src":
pp_main.plot(ylabel="Triplet Loss",
xlabel="Epochs",
yscale="log")
path = exp_dict["summary_path"]
pp_main.fig.tight_layout(rect=[0, 0.03, 1, 0.95])
figName = "%s/png_plots/SRC_%s.png" % (path, exp_name)
ms.create_dirs(figName)
pp_main.fig.savefig(figName)
pp_main.fig.tight_layout()
pp_main.fig.suptitle("")
figName = "%s/pdf_plots/SRC_%s.pdf" % (path, exp_name)
ms.create_dirs(figName)
pp_main.fig.savefig(figName, dpi = 600)
print("saved {}".format(figName))
if args.mode == "plot_tgt":
pp_main.plot(ylabel="Classifcation Accuracy",
xlabel="Epochs",
yscale="log")
path = exp_dict["summary_path"]
pp_main.fig.tight_layout(rect=[0, 0.03, 1, 0.95])
figName = "%s/png_plots/TGT_%s.png" % (path, exp_name)
ms.create_dirs(figName)
pp_main.fig.savefig(figName)
pp_main.fig.tight_layout()
pp_main.fig.suptitle("")
figName = "%s/pdf_plots/TGT_%s.pdf" % (path, exp_name)
ms.create_dirs(figName)
pp_main.fig.savefig(figName, dpi = 600)
print("saved {}".format(figName))
####################################################
if args.mode == "test_model":
OA = 0.
AA = 0.
Kappa = 0.
for run in range(N_Runs):
OA = OA + results[run]['OA']
AA = AA + results[run]['AA']
Kappa = Kappa + results[run]['Kappa']
print("====================="
"\nOvearll Accuracy {}\n"
"=====================".format(OA/N_Runs))
print("====================="
"\nAverage Accuracy {}\n"
"=====================".format(AA/N_Runs))
print("====================="
"\nKappa {}\n"
"=====================".format(Kappa/N_Runs))
result={}
result['OA'] = [OA/N_Runs]
result['AA'] = [AA/N_Runs]
result['Kappa'] = [Kappa/N_Runs]
ms.save_json('results/'+exp_name+'_center_{}_disc_{}.json'.format(exp_dict["options"]["center"],exp_dict["options"]["disc"]), result)