-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathnet.py
75 lines (68 loc) · 2.88 KB
/
net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Mon Oct 22 12:38:20 2018
@author: dengbin
"""
import torch
import torch.nn as nn
############################ network design
class CNNEncoder(nn.Module):
"""Deep Embedding Module"""
def __init__(self,input_channels,feature_dim=64):
super(CNNEncoder, self).__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(input_channels,feature_dim,kernel_size=1,padding=0),
nn.BatchNorm2d(feature_dim, momentum=1, affine=True),
nn.ReLU())
self.layer2 = nn.Sequential(
nn.Conv2d(feature_dim,feature_dim,kernel_size=1,padding=0),
nn.BatchNorm2d(feature_dim, momentum=1, affine=True),
nn.ReLU())
self.layer3 = nn.Sequential(
nn.Conv2d(feature_dim,feature_dim,kernel_size=1,padding=0),
nn.BatchNorm2d(feature_dim, momentum=1, affine=True),
nn.ReLU())
self.layer4 = nn.Sequential(
nn.Conv2d(feature_dim,feature_dim,kernel_size=1,padding=0),
nn.BatchNorm2d(feature_dim, momentum=1, affine=True),
nn.ReLU())
def forward(self,x):
out = self.layer1(x)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
return out # 64
class RelationNetwork(nn.Module):
"""Deep Metric Module"""
def __init__(self, patch_size,feature_dim=64):
super(RelationNetwork, self).__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(feature_dim*2,feature_dim,kernel_size=1,padding=0),
nn.BatchNorm2d(feature_dim, momentum=1, affine=True),
nn.ReLU())
self.layer2 = nn.Sequential(
nn.Conv2d(feature_dim,feature_dim,kernel_size=1,padding=0),
nn.BatchNorm2d(feature_dim, momentum=1, affine=True),
nn.ReLU())
self.layer3 = nn.Conv2d(feature_dim,1,kernel_size=patch_size,padding=0)
def forward(self,x):
out = self.layer1(x)
out = self.layer2(out)
out = self.layer3(out)
out = out.view(out.size(0),-1)
out = torch.sigmoid(out)
return out
######################################################## Initiate weights of net
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, 0.05)
if m.bias is not None:
m.bias.data.zero_()
elif classname.find('Linear') != -1:
m.weight.data.normal_(0, 0.01)
m.bias.data = torch.ones(m.bias.data.size())
else:
pass