Skip to content

Latest commit

 

History

History
180 lines (120 loc) · 5.08 KB

README.rst

File metadata and controls

180 lines (120 loc) · 5.08 KB
Project generated with PyScaffold

library-prep-plate-prep

Find optimal plate arrangements.

Find optimal arrangements for sequencing samples on a plate during library prep.

Installation

git clone https://github.com/t-silvers/library-prep-plate-prep.git
cd library-prep-plate-prep
pip install -e .

# or

pip install git+https://github.com/t-silvers/library-prep-plate-prep.git

Usage

Command line interface

lppp -i /path/to/samples.csv -o arrangement.csv

Python package

Finer user control is possible with the Python package.

  1. Import sequencing sample data.
import library_prep_plate_prep as lppp

num_samples = 150
sample_data = lppp.simulate_data(num_samples)
print(sample_data.head(2))
# species  donor  family  timepoint
# sample
# species 4:B003_0001 @ 03 days        4      1       3          3
# species 3:B001_0001 @ 14 days        3      1       1         14
  1. Provide initial values for the solvers. Except for the number of empty wells, values must be passed as a per-plate list, where all lists share a length equaling the total number of plates.
plate_init = {
    'n_controls': [3, 2],
    'n_columns': [10, 10],
    'n_rows': [8, 8],
    'n_empty': 2,
}

Alternatively, let library-prep-plate-prep calculate reasonable defaults.

plate_init = lppp.utils.calc_init_vals(sample_data.shape[0])
  1. Plate arrangement problems require a plate geometry object and a sample geometry object. Geometry objects have an associated cost function, calculated over observed values in the associated metric space.
plates = lppp.geometries.Plates(
    plate_init['n_columns'],
    plate_init['n_rows'],
    cost_fn=lppp.costs.SqEuclidean()
)

samples = lppp.geometries.SequencingSamples.from_samples(
    sample_data,
    plate_init['n_empty'],
    sum(plate_init['n_controls']),
    cost_fn=lppp.costs.CovarSimilarity()
)

Custom cost functions can be used, either by subclassing Python cost function classes or using convenience functions. In the customization below, we are "saying" that two samples of the same species should evaluate to a high cost and that no other covariates are important. (All non-specified "rules" have a cost of 0.)

custom_sample_cost_fn = lppp.costs.CovarSimilarity.from_rules(
    {
        'species': 10,
        'species_&_family': 10,
        'species_&_donor': 10,
        'species_&_family_&_timepoint': 10,
        'species_&_donor_&_family': 10,
        'species_&_donor_&_family_&_timepoint': 10,
    }
)

samples = lppp.geometries.SequencingSamples.from_samples(
    sample_data,
    plate_init['n_empty'],
    sum(plate_init['n_controls']),
    cost_fn=custom_sample_cost_fn
)
  1. Initialize the plate arrangement problem.
prob = lppp.problems.ArrangementProblem(plates, samples)
  1. Set up the seeded arrangement problem by first allocating control wells using a space-filling design method (here, Latin Hypercube Sampling).
ctrls_seeder = lppp.solvers.LHSampler()
ctrls_arrangement = ctrls_seeder(prob, nt=plate_init['n_controls'])
  1. Select a solver and solve the plate arrangement problem.
solver = lppp.solvers.QAP_2opt()
soln = solver(prob, partial_match=ctrls_arrangement)

plate_arrangement = lppp.problems.soln_to_df(prob, soln)
print(plate_arrangement.head(1))
# plate  column row well
# sample
# species 1:B002_0002 @ 03 days      0       1   A   A1

library-prep-plate-prep provides tools for visualizing the problem set-up and solution space.

import matplotlib.pyplot as plt

fig, ax = plt.subplots(figsize=(9, 2), layout='constrained')
lppp.plotting.plate_costs(plates, ncols=5, fig=fig, ax=ax)

plate

fig, ax = plt.subplots(figsize=(4, 4), layout='constrained')
lppp.plotting.sample_costs(samples, ax=ax)

crosscontamination

References

  • 2016 Mathematical modeling. 4.3.4 The Transportation Problem
  • 2015 Princeton companion mathematics. VI.18 The Traveling Salesman Problem. William Cook
  • 2023 Design Heuristics 2.5.4 Quadratic Assignment, 9 Local Search Learning, 9.2 Strategic Oscillations, code listing 9.1

Note

This project has been set up using PyScaffold 4.5. For details and usage information on PyScaffold see https://pyscaffold.org/.