-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
121 lines (95 loc) · 4.09 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import torch
from torch.utils.data import DataLoader
import torch.nn as nn
import numpy as np
import pandas as pd
import wandb
from sklearn.model_selection import train_test_split
from src.dataset import LJDataset
from src.wavenet import WaveNet, encode_mu_law, quantize
from config import ModelConfig
from src.preprocessing import MelSpectrogram
from config import MelSpectrogramConfig
import warnings
warnings.filterwarnings('ignore')
df = pd.read_csv("LJSpeech-1.1/metadata.csv", sep='|', quotechar='`', index_col=0, header=None)
train, test = train_test_split(df, test_size=0.2, random_state=10)
train_dataset = LJDataset(train)
test_dataset = LJDataset(test)
model_config = ModelConfig()
train_dataloader = DataLoader(train_dataset,
batch_size=model_config.batch_size,
num_workers=model_config.num_workers,
shuffle=False,
pin_memory=True)
test_dataloader = DataLoader(test_dataset,
batch_size=model_config.batch_size,
num_workers=model_config.num_workers,
pin_memory=True)
device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")
model = WaveNet()
if model_config.from_pretrained:
model.load_state_dict(torch.load(model_config.model_path))
model.to(device)
optimizer = torch.optim.AdamW(model.parameters(), lr=model_config.lr)
num_steps = len(train_dataloader) * model_config.num_epochs
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=num_steps, eta_min=0.00001)
if model_config.wandb_log:
wandb.init(project="wavenet")
wandb.watch(model, log="all")
featurizer = MelSpectrogram(MelSpectrogramConfig()).to(device)
best_loss = 10.0
for epoch in range(1, model_config.num_epochs + 1):
model.to(device)
train_losses = []
train_accuracy = []
model.train()
for wavs in train_dataloader:
wavs = wavs.to(device)
zero_frame = torch.zeros((wavs.shape[0], 1)).to(device)
padded_wavs = torch.cat([zero_frame, wavs[:, :-1]], dim=1)
mels = featurizer(wavs)
outputs = model(padded_wavs, mels)
classes = outputs.argmax(dim=1)
quantized_wavs = quantize(encode_mu_law(wavs))
loss = nn.CrossEntropyLoss()(outputs, quantized_wavs)
accuracy = (classes == quantized_wavs).sum().item() / classes.shape[-1] / classes.shape[0]
train_accuracy.append(accuracy)
if (epoch % 10) == 0:
for g in optimizer.param_groups:
g['lr'] *= 0.5
optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1)
optimizer.step()
lr_scheduler.step()
train_losses.append(loss.item())
model.eval()
with torch.no_grad():
val_losses = []
val_accuracy = []
for wavs in test_dataloader:
wavs = wavs.to(device)
zeros = torch.zeros((wavs.shape[0], 1)).to(device)
padded_wavs = torch.cat([zeros, wavs[:, :-1]], dim=1)
mels = featurizer(wavs)
outputs = model(padded_wavs, mels)
classes = outputs.argmax(dim=1)
quantized_wavs = quantize(encode_mu_law(wavs))
accuracy = (classes == quantized_wavs).sum().item() / classes.shape[-1] / classes.shape[0]
val_accuracy.append(accuracy)
loss = nn.CrossEntropyLoss()(outputs, quantized_wavs)
val_losses.append(loss.item())
train_loss = np.mean(train_losses)
val_loss = np.mean(val_losses)
train_acc = np.mean(train_accuracy)
val_acc = np.mean(val_accuracy)
if model_config.wandb_log:
wandb.log({"train_loss": train_loss,
"val_loss": val_loss,
"train accuracy": train_acc,
"val accuracy": val_acc,
})
if val_loss < best_loss:
best_loss = val_loss
torch.save(model.state_dict(), "wavenet1.pth")